Author(s):
Ashpak M. Tamboli, Naziya A. Tamboli, Vaibhav P. Khadul
Email(s):
vaibhavkhadul59@gmail.com
DOI:
10.52711/2231-5691.2026.00007
Address:
Ashpak M. Tamboli1, Naziya A. Tamboli2, Vaibhav P. Khadul3*
1Department of Pharmaceutical Chemistry, Sahyadri College of Pharmacy, Methwade, Sangola, 413307, Solapur, Dr. Babasaheb Ambedkar Technological University, Maharashtra, India.
2Department of Pharmacology, Sahyadri College of Pharmacy, Methwade, Sangola, 413307, Solapur, Dr. Babasaheb Ambedkar Technological University, Maharashtra, India.
3Sahyadri College of Pharmacy, Methwade, Sangola, 413307, Solapur, Dr. Babasaheb Ambedkar Technological University, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2026
ABSTRACT:
In recent years, sustained-release transdermal drug delivery systems (TDDS) have gained popularity as a viable alternative to regulated and prolonged drug administration because they avoid hepatic first-pass metabolism, increasing bioavailability and lowering systemic side effects. ZnO-NPs can modulate drug permeation through the skin by interacting with the stratum corneum, enabling efficient drug diffusion via transappendageal, transcellular, and intercellular pathways. Their surface charge and nanoscale size contribute to prolonged retention at the application site, ensuring sustained drug release. Zinc oxide nanoparticles (ZnO-NPs) have emerged as potential materials in TDDS due to their distinct features, which include increased catalytic activity and applicability for a variety of biomedical applications. This paper explores the fundamentals of transdermal drug delivery, including skin structure, penetration pathways, and strategies for enhancing drug permeation. It also delves into the mechanisms of sustained release in TDDS, comparing matrix and reservoir systems. Furthermore, the various methods for synthesizing ZnO-NPs, including chemical, vapor transport, hydrothermal, green synthesis, and sol-gel techniques, are discussed. Green-synthesized ZnO-NPs have a variety of biomedical applications, including antibacterial and anticancer properties.
Cite this article:
Ashpak M. Tamboli, Naziya A. Tamboli, Vaibhav P. Khadul. Advances in Sustained-Release Transdermal Drug Delivery Systems Utilizing Zinc Oxide Nanoparticles. Asian Journal of Pharmaceutical Research. 2026; 16(1):51-0. doi: 10.52711/2231-5691.2026.00007
Cite(Electronic):
Ashpak M. Tamboli, Naziya A. Tamboli, Vaibhav P. Khadul. Advances in Sustained-Release Transdermal Drug Delivery Systems Utilizing Zinc Oxide Nanoparticles. Asian Journal of Pharmaceutical Research. 2026; 16(1):51-0. doi: 10.52711/2231-5691.2026.00007 Available on: https://asianjpr.com/AbstractView.aspx?PID=2026-16-1-7
7. REFERENCES:
1. Durga KN, Bhuvaneswari P, Hemalatha B, Padmalatha K. A review on transdermal drug delivery system. Asian Journal of Pharmacy and Technology. 2022; 12(2): 159-66. https://doi.org/10.52711/2231-5713.2022.00027
2. Rastogi V, Yadav P. Transdermal drug delivery system: An overview. Asian Journal of Pharmaceutics (AJP). 2012; 6(3). https://doi.org/10.22377/ajp.v6i3.51
3. Phaugat P, Dhall M, Nishal S. A Concise Outline on Innovative Permeation Enhancers in Transdermal Drug Delivery Approach. Indian Drugs. 2023 Aug 1; 60(8). https://doi.org/10.53879/id.60.08.12392
4. Das PS, Saha PU. Design and characterisation of transdermal patches of Phenformin hydrochloride. Int J Curr Pharm Res. 2017 Nov 14; 9(6): 90-3. http://dx.doi.org/10.22159/ijcpr.2017v9i6.23437
5. Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceutical science and technology today. 2000 Sep 1; 3(9): 318-26. https://doi.org/10.1016/S1461-5347(00)00295-9
6. Chandrashekar NS, Shobha Rani RH. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J Pharm Sci. 2008 Jan; 70(1): 94-6. doi: 10.4103/0250-474X.40340. PMID: 20390089; PMCID: PMC2852070.
7. Merkle HP, Anders R, Wermerskirchen A. Mucoadhesive buccal patches for peptide delivery. In Bioadhesive Drug Delivery Systems 2024 Jan 1 (pp. 105-136). https://doi.org/10.1201/9781003574484-6
8. Brown L, Langer R. Transdermal delivery of drugs. Annual review of medicine. 1988; 39: 221-9. 10.1146/annurev.me.39.020188.001253
9. Benson HA. Transdermal drug delivery: penetration enhancement techniques. Current Drug Delivery. 2005 Jan 1; 2(1): 23-33. https://doi.org/10.2174/1567201052772915
10. Patil H, Patel N, Patil V, Rane B, Gujrathi N, Pawar S. A review on sustained release drug delivery system. International Journal Of Pharmaceutical, Chemical And Biological Sciences. 2014; 4(3): 470-8. 10.20959/wjpr20209-18370
11. Verma DK. Formulation and characterization of metformin hydrochloride sustained release matrix tablet containing Cassia tora mucilage. Journal of Drug Delivery and Therapeutics. 2017; 7(6): 66-75. http://dx.doi.org/10.22270/jddt.v7i6.1520
12. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Advanced drug delivery reviews. 2004 Feb 23; 56(3): 335-47. https://doi.org/10.1016/j.addr.2003.10.008
13. Brahmankar DM, Jaiswal SB. Biopharmaceutics and Pharmacokinetics: Pharmacokinetics, (2nd ed) Vallabh Prakashan, Delhi, 2009, 399-401.
14. E Leucuta S. Drug delivery systems with modified release for systemic and biophase bioavailability. Current Clinical Pharmacology. 2012 Nov 1; 7(4): 282-317. https://doi.org/10.2174/157488412803305786
15. Espitia PJ, Soares ND, Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EA. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology. 2012 Jul; 5: 1447-64. https://doi.org/10.1007/s11947-012-0797-6
16. Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. Journal of the American Chemical Society. 2010 Jan 1; 132(1): 138-46. https://doi.org/10.1021/ja904307n
17. Khan ZU, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, Tahir K, Khan FU, Imran M, Ahmad N, Ullah F. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. Journal of Photochemistry and Photobiology B: Biology. 2019 Mar 1; 192: 147-57. https://doi.org/10.1016/j.jphotobiol.2019.01.013
18. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery. 2010 Sep 1; 7(9): 1063-77. https://doi.org/10.1517/17425247.2010.502560
19. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM. Mechanisms of cell death in oxidative stress. Antioxidants and Redox Signaling. 2007 Jan 1; 9(1): 49-89. https://doi.org/10.1089/ars.2007.9.49
20. Montagna, W. The Structure and Function of Skin; Elsevier: Amsterdam, the Netherlands, 2012.
21. Brito S, Baek M, Bin BH. Skin structure, physiology, and pathology in topical and transdermal drug delivery. Pharmaceutics. 2024 Oct 31; 16(11): 1403. https://doi.org/10.3390/pharmaceutics16111403
22. Al-Khafaji Z, Brito S, Bin BH. Zinc and zinc transporters in dermatology. International Journal of Molecular Sciences. 2022 Dec 18; 23(24): 16165. https://doi.org/10.3390/ijms232416165
23. Verma DK. Formulation and characterization of metformin hydrochloride sustained release matrix tablet containing Cassia tora mucilage. Journal of Drug Delivery and Therapeutics. 2017; 7(6): 66-75. DOI: http://dx.doi.org/10.22270/jddt.v7i6.1520
24. Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature reviews Molecular Cell Biology. 2009 Mar; 10(3): 207-17. https://doi.org/10.1038/nrm2636
25. Bin BH, Joo YH, Lee AY, Shin SS, Cho EG, Lee TR. Novel inhibitory effect of N-(2-hydroxycyclohexyl) valiolamine on melanin production in a human skin model. International Journal of Molecular Sciences. 2014 Jul 9; 15(7): 12188-95. https://doi.org/10.3390/ijms150712188
26. Bin BH, Kim ST, Bhin J, Lee TR, Cho EG. The development of sugar-based anti-melanogenic agents. International Journal of Molecular Sciences. 2016 Apr 16; 17(4):583. https://doi.org/10.3390/ijms17040583
27. Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, Severino P, Paganelli MO, Chaud MV, Silva AM. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022 Feb 1; 8(2). https://doi.org/10.1016/j.heliyon.2022.e08938
28. Lai-Cheong JE, McGrath JA. Structure and function of skin, hair and nails. Medicine. 2013 Jun 1; 41(6): 317-20. https://doi.org/10.1016/j.mpmed.2013.04.017
29. Jabłonska S, Majewski S, Obalek S, Orth G. Cutaneous warts. Clinics in Dermatology. 1997 May 1; 15(3): 309-19. https://doi.org/10.1016/S0738-081X(96)00170-8
30. Schuetz YB, Naik A, Guy RH, Kalia YN. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opinion on Drug Delivery. 2005 May 1; 2(3):533-48. https://doi.org/10.1517/17425247.2.3.533
31. Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opinion on Drug Delivery. 2014 Mar 1; 11(3):393-407. https://doi.org/10.1517/17425247.2014.875528
32. Shahzad Y, Louw R, Gerber M, Du Plessis J. Breaching the skin barrier through temperature modulations. Journal of Controlled Release. 2015 Mar 28; 202: 1-3. https://doi.org/10.1016/j.jconrel.2015.01.019
33. Zaid Alkilani A, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015 Oct 22; 7(4): 438-70. https://doi.org/10.3390/pharmaceutics7040438
34. HS V, Krishna KR, Parthiban S, Anupama HB. Microsponge gel in transdermal delivery: a comprehensive review of its role, benefits, enhanced skin penetration and efficacy. World Journal of Pharmaceutical Research. 202; 14(7): 599-613. 10.20959/wjpr20257-36093
35. Sugibayashi K, Morimoto Y. Polymers for transdermal drug delivery systems. Journal of Controlled Release. 1994 Feb 1; 29(1-2):177-85. https://doi.org/10.1016/0168-3659(94)90134-1
36. Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert opinion on drug delivery. 2014 Mar 1; 11(3): 393-407. https://doi.org/10.1517/17425247.2014.875528
37. Gratieri T, Alberti I, Lapteva M, Kalia YN. Next generation intra-and transdermal therapeutic systems: using non-and minimally-invasive technologies to increase drug delivery into and across the skin. European Journal of Pharmaceutical Sciences. 2013 Dec 18; 50(5): 609-22. https://doi.org/10.1016/j.ejps.2013.03.019
38. Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AE, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Advanced drug delivery reviews. 2014 May 1; 71: 98-114. https://doi.org/10.1016/j.addr.2013.05.010
39. Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opinion on Drug Delivery. 2014 Mar 1; 11(3): 393-407. https://doi.org/10.1517/17425247.2014.875528
40. Gratieri T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Advanced Drug Delivery Reviews. 2013 Feb 1; 65(2): 315-29. https://doi.org/10.1016/j.addr.2012.04.012
41. Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. European Journal of Pharmaceutics and Biopharmaceutics. 2015 Jan 1; 89: 312-28. https://doi.org/10.1016/j.ejpb.2014.12.020
42. Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Advanced Drug Delivery Reviews. 2014 Jun 15; 72: 127-43. https://doi.org/10.1016/j.addr.2014.01.007
43. Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliverys. Ultrasonics. 2014 Jan 1; 54(1):56-65. https://doi.org/10.1016/j.ultras.2013.07.007
44. Choudhary N, Singh AP, Singh AP. Transdermal drug delivery system: A review. Indian J. Pharm. Pharmacol. 2021; 8(1): 5-9. https://doi.org/10.18231/j.ijpp.2021.002
45. Brahmankar DM, Jaiswal SB. Biopharmaceutics and pharmacokinetics A Treatise. Delhi: Vallabh Prakashan; 1995; 335-71.
46. Rai-Kalal P, Jajoo A. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry. 2021 Mar 1; 160: 341-51. https://doi.org/10.1016/j.plaphy.2021.01.032
47. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano letters. 2006 Apr 12; 6(4): 866-70. https://doi.org/10.1021/nl052326h
48. Wojnarowicz J, Chudoba T, Lojkowski W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials. 2020 May 31; 10(6): 1086. https://doi.org/10.3390/nano10061086
49. Noman MT, Amor N, Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Critical Reviews in Solid State and Materials Sciences. 2022 Mar 4; 47(2): 99-141. https://doi.org/10.1080/10408436.2021.1886041
50. Hudlikar M, Joglekar S, Dhaygude M, Kodam K. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. Journal of Nanoparticle Research. 2012 May; 14: 1-6. https://doi.org/10.1007/s11051-012-0865-x
51. Kong XY, Wang ZL. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano letters. 2003 Dec 10; 3(12): 1625-31. https://doi.org/10.1021/nl034463p
52. Lee CY, Tseng TY, Li SY, Lin P. Effect of phosphorus dopant on photoluminescence and field-emission characteristics of Mg0. 1Zn0. 9O nanowires. Journal of Applied Physics. 2006 Jan 15; 99(2). https://doi.org/10.1063/1.2161420
53. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008 Apr 1; 71(7):1308-16. https://doi.org/10.1016/j.chemosphere.2007.11.047
54. Ruchika AK. Performance analysis of Zinc oxide based alcohol sensors. Int. J. Appl. Sci. Eng. Res. 2015; 4(4):428-36. 10.6088.ijaser.04042
55. Kong XY, Wang ZL. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano letters. 2003 Dec 10; 3(12):1625-31. https://doi.org/10.1021/nl034463p
56. Lee CY, Tseng TY, Li SY, Lin P. Effect of phosphorus dopant on photoluminescence and field-emission characteristics of Mg0. 1Zn0. 9O nanowires. Journal of Applied Physics. 2006 Jan 15; 99(2). https://doi.org/10.1063/1.2161420
57. Bhat JA, Faizan M, Bhat MA, Huang F, Yu D, Ahmad A, Bajguz A, Ahmad P. Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere. 2022 Feb 1; 288:132471. https://doi.org/10.1016/j.chemosphere.2021.132471
58. Mahmoud AW, Abdeldaym EA, Abdelaziz SM, El-Sawy MB, Mottaleb SA. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy. 2019 Dec 21; 10(1):19.https://doi.org/10.3390/agronomy10010019
59. Ambika S, Sundrarajan M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology. 2015 May 1; 146:52-7. https://doi.org/10.1016/j.jphotobiol.2015.02.020
60. Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, Ali EF. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants. 2021 Feb 23; 10(2):421. https://doi.org/10.3390/plants10020421
61. Somiya, S. Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, 2nded.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2013; 1–1229.
62. Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E. Nanomaterial by sol‐gel method: synthesis and application. Advances in Materials Science and Engineering. 2021; 2021(1):5102014. https://doi.org/10.1155/2021/5102014
63. Simon V, Cavalu S, Simon S, Mocuta H, Vanea E, Prinz M, Neumann M. Surface functionalisation of sol–gel derived aluminosilicates in simulated body fluids. Solid State Ionics. 2009 May 29; 180(9-10):764-9. https://doi.org/10.1016/j.ssi.2009.02.011
64. Carter, B.C.; Norton, M.G. Ceramic Materials: Science and Engineering; 2013. http://ir.mksu.ac.ke/handle/123456780/6227
65. Al Abdullah K, Awad S, Zaraket J, Salame C. Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature. Energy Procedia. 2017 Jul 1; 119:565-70. https://doi.org/10.1016/j.egypro.2017.07.080
66. Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry. 2016 Jan 1; 19:211-6. https://doi.org/10.1016/j.proche.2016.03.095
67. Alwan RM, Kadhim QA, Sahan KM, Ali RA, Mahdi RJ, Kassim NA, Jassim AN. Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 2015; 5(1):1-6. DOI: 10.5923/j.nn.20150501.01
68. Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry. 2016 Jan 1; 19:211-6. https://doi.org/10.1016/j.proche.2016.03.095
69. Burgess R. Medical applications of nanoparticles and nanomaterials. InStrategy for the Future of Health 2009 (pp. 257-283). IOS Press. 10.3233/978-1-60750-050-6-257
70. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, O’neill AJ, York DW. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research. 2010 Jun; 12:1625-36. https://doi.org/10.1007/s11051-009-9711-1
71. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008 Apr 15; 24(8):4140-4. https://doi.org/10.1021/la7035949
72. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environmental Science and Technology. 2007 Jun 1; 41(11):4158-63. https://doi.org/10.1021/es062629t
73. Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007 Jul 1; 67(3-4):1003-6. https://doi.org/10.1016/j.saa.2006.09.028
74. Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials. 2013 Mar 1; 34(8):2057-68. https://doi.org/10.1016/j.biomaterials.2012.11.044
75. Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering. 2013 Aug; 36:1131-9. https://doi.org/10.1007/s00449-012-0867-1
76. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007 Aug 15; 9(1):257-88. https://doi.org/10.1146/annurev.bioeng.9.060906.152025