Author(s): Vedangi Arvind Kulkarni, Mayur Gulab Kharat, Shivani Parmeshwar Chavan, Sarita Khushalrao Metangale, Pratiksha Purushottam Varhade

Email(s): vedangikulkarni2@gmail.com

DOI: 10.52711/2231-5691.2026.00008   

Address: Vedangi Arvind Kulkarni, Mayur Gulab Kharat, Shivani Parmeshwar Chavan, Sarita Khushalrao Metangale, Pratiksha Purushottam Varhade
Department of Pharmaceutics, Satyajeet College of Pharmacy, Mehkar, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 1,     Year - 2026


ABSTRACT:
Bioactive glasses (BGs) are a new material for bone regeneration because they behave as a material that can bond with bone tissues to elicit a cell response. BGs were first developed by Hench in the 1960s and are silicate-based materials that have been extensively utilized for orthopedic and dental applications, due to their osteoconductive and osteoinductive properties. They achieve their bioactivity mainly through the release of ionic dissolution products (e.g., calcium, phosphate, and silicon) which precipitate a hydroxyapatite-like layer on the surfaces, supporting bone integration. These ionic dissolution products can also facilitate osteoblast formation and differentiation and, therefore, new bone formation. There have also been recent developments of BG compositions which increasingly include borate- or phosphate-based BGs that have increased degradation rates and/or improved biological interaction. Additionally, the development of nanostructured and mesoporous BGs increases bioactivity by increasing surface area or modifying ionic release. BGs are generally incorporated into polymers or ceramics and often demonstrate composites for desired mechanical properties that are more appropriate for load-bearing applications. Additional value of BGs has come from the development of therapeutic ions (e.g., strontium, copper, silver) that can be incorporated for antibacterial, angiogenic, or osteogenic action, interactions. However, the brittleness of the BGs, the degradation time of some formulations, or low mechanical strength may need further investigation for composite formulation, or 3D-printed scaffolds.


Cite this article:
Vedangi Arvind Kulkarni, Mayur Gulab Kharat, Shivani Parmeshwar Chavan, Sarita Khushalrao Metangale, Pratiksha Purushottam Varhade. Bioactive Glasses for Bone Regeneration. Asian Journal of Pharmaceutical Research. 2026; 16(1):61-3. doi: 10.52711/2231-5691.2026.00008

Cite(Electronic):
Vedangi Arvind Kulkarni, Mayur Gulab Kharat, Shivani Parmeshwar Chavan, Sarita Khushalrao Metangale, Pratiksha Purushottam Varhade. Bioactive Glasses for Bone Regeneration. Asian Journal of Pharmaceutical Research. 2026; 16(1):61-3. doi: 10.52711/2231-5691.2026.00008   Available on: https://asianjpr.com/AbstractView.aspx?PID=2026-16-1-8


9. REFERENCES:
1.    Armiento AR, Hatt LP, Sanchez Rosenberg G, Thompson K, Stoddart MJ. Functional biomaterials for bone regeneration: a lesson in complex biology. Advanced Functional Materials. 2020 Oct; 30(44):1909874.
2.    Pramanik K. Stem Cell and Tissue Engineering: Bone, Cartilage, and Associated Joint Tissue Defects. CRC Press; 2024 Mar 29.
3.    Verrier S, Alini M, Alsberg E, Buchman SR, Kelly D, Laschke MW, Menger MD, Murphy WL, Stegemann JP, Schütz M, Miclau T. Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur Cell Mater. 2016 Jul 19; 32:87-110.
4.    Huang J, Han Q, Cai M, Zhu J, Li L, Yu L, Wang Z, Fan G, Zhu Y, Lu J, Zhou G. Effect of angiogenesis in bone tissue engineering. Annals of Biomedical Engineering. 2022 Aug; 50(8):898-913.
5.    Antar SA, Ashour NA, Marawan ME, Al-Karmalawy AA. Fibrosis: types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. International journal of molecular sciences. 2023 Feb 16; 24(4):4004.
6.    Abdelaziz AG, Nageh H, Abdo SM, Abdalla MS, Amer AA, Abdal-Hay A, Barhoum A. A review of 3D polymeric scaffolds for bone tissue engineering: principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering. 2023 Feb 3; 10(2):204.
7.    Georgeanu VA, Gingu O, Antoniac IV, Manolea HO. Current options and future perspectives on bone graft and biomaterials substitutes for bone repair, from clinical needs to advanced biomaterials research. Applied Sciences. 2023 Jul 22; 13(14):8471.
8.    de Lacerda Schickert S, van den Beucken JJ, Leeuwenburgh SC, Jansen JA. Pre-clinical evaluation of biological bone substitute materials for application in highly loaded skeletal sites. Biomolecules. 2020 Jun 9; 10(6):883.
9.    Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards stem cell therapy for critical-sized segmental bone defects: current trends and challenges on the path to clinical translation. Journal of functional biomaterials. 2024 May 27; 15(6):145.
10.    Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for bone regeneration: from graft to tissue engineering. International journal of molecular sciences. 2021 Jan 23; 22(3):1128. 
11.     Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. The open dentistry journal. 2014 May 16; 8:56.
12.    Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold guided bone regeneration for the treatment of large segmental defects in long bones. Biomedicines. 2023 Jan 24; 11(2):325.
13.     Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells. 2021 Jul 11; 10(7):1749.
14.    Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the inflammatory response and bone healing. Frontiers in endocrinology. 2020 Jun 11; 11:386.
15.    Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J. Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews Neurology. 2015 Jan; 11(1):56-64.
16.    Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nature reviews Disease primers. 2021 Aug 5; 7(1):57.
17.    Hingorani DV, Camargo MF, Quraishi MA, Adams SR, Advani SJ. Tumor activated cell penetrating peptides to selectively deliver immune modulatory drugs. Pharmaceutics. 2021 Mar 10; 13(3):365.
18.    Sudarmono, Sunardhi Widyaputra, Suhardjo Sitam, Inne Suherna, Arni D. Fitri, Arif Rachman. Comparison of Bone regeneration in hADMSC Versus hUCBMSC with hBMMSC as a Reference: A Literature Review of Potential Bone Regeneration. Research Journal of Pharmacy and Technology. 2021; 14(4):1993-8.
19.    Ista Damayanti, Wawan Mulyawan, Bambang Pontjo Priosoeryanto, Meirina Gartika, Harmas Yazid Yusuf. Impact of Intermittent Hypobaric Hypoxia on HIF-1α and VEGF Expression for Mandibular Bone Osteogenesis: A Scoping Review. Research Journal of Pharmacy and Technology. 2025; 18(3):1394-4.
20.    Shannon CE, Huser AJ, Paley D. Cross-union surgery for congenital pseudarthrosis of the tibia. Children. 2021 Jun 24; 8(7):547.
21.    Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The concept of scaffold-guided bone regeneration for the treatment of long bone defects: current clinical application and future perspective. Journal of functional biomaterials. 2023 Jun 27; 14(7):341.
22.    Mayfield CK, Ayad M, Lechtholz-Zey E, Chen Y, Lieberman JR. 3D-printing for critical sized bone defects: current concepts and future directions. Bioengineering. 2022 Nov 11; 9(11):680.
23.    Valtanen RS, Yang YP, Gurtner GC, Maloney WJ, Lowenberg DW. Synthetic and Bone tissue engineering graft substitutes: What is the future?. Injury. 2021 Jun 1; 52:S72-7.
24.    Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. International journal of implant dentistry. 2017 Dec; 3:1-7.
25.    Starzl TE. History of clinical transplantation. World journal of surgery. 2000 Jul; 24(7):759-82.
26.    Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. International journal of environmental research and public health. 2022 Jan 25; 19(3):1338.
27.    Alvarez K, Nakajima H. Metallic scaffolds for bone regeneration. Materials. 2009 Jul 23; 2(3):790-832.
28.     Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive materials. 2021 Nov 1; 6(11):3904-23.
29.    Saumya S, Agila Anbuselvan, Poorva S, G. Priya. A Review on 3D Printing Techniques and Scaffolds for Auricular Cartilage Reconstruction. Research J. Pharm. and Tech 2018; 11(9): 4179-4186.
30.     Lin K, Sheikh R, Romanazzo S, Roohani I. 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials. 2019 Aug 21; 12(17):2660.
31.     Qi J, Yu T, Hu B, Wu H, Ouyang H. Current biomaterial-based bone tissue engineering and translational medicine. International journal of molecular sciences. 2021 Sep 23; 22(19):10233.
32.    Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021 May 18; 26(10):3007.
33.    Barreto ME, Medeiros RP, Shearer A, Fook MV, Montazerian M, Mauro JC. Gelatin and bioactive glass composites for tissue engineering: a review. Journal of Functional Biomaterials. 2022 Dec 31; 14(1):23.
34.    Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going?. Journal of functional biomaterials. 2018 Mar 19; 9(1):25.
35.    Amadou Kouyaté, Akissi Lydie Chantal Koffi, Ollo Kambiré, Ange Privat Ahoussou, Albert Trokourey. Physicochemical characterization of 20.15[(2.038 + x) SiO2-(1.457 - x) Na2O]-2.6P2O5-26.915CaO-0.035SrO system oxide glasses. Asian J. Research Chem. 2020; 13(5):352-356.
36.    Alqahtani AM. Guided tissue and bone regeneration membranes: a review of biomaterials and techniques for periodontal treatments. Polymers. 2023 Aug 10; 15(16):3355.
37.    Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JM. Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials. 2018 Dec 12; 11(12):2530.
38.    Santin M, Phillips GJ, editors. Biomimetic, bioresponsive, and bioactive materials: An introduction to integrating materials with tissues. John Wiley & Sons; 2012 Mar 7.
39.    Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new standards. Journal of dental research. 2012 Aug; 91(8):736-44.
40.    Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical reviews. 2008 Nov 12; 108(11):4754-83.
41.    Mariani E, Lisignoli G, Borzì RM, Pulsatelli L. Biomaterials: foreign bodies or tuners for the immune response?. International journal of molecular sciences. 2019 Feb 1; 20(3):636.
42.    Uskoković V, Wu VM. Calcium phosphate as a key material for socially responsible tissue engineering. Materials. 2016 Jun; 9(6):434.
43.    Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of deferoxamine in tissue regeneration attributed to promoted angiogenesis. Molecules. 2024 Apr 29; 29(9):2050.
44.    Malik E, Dennison SR, Harris F, Phoenix DA. pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals. 2016 Nov 1; 9(4):67.
45.    Vartanian SM, Conte MS. Surgical intervention for peripheral arterial disease. Circulation research. 2015 Apr 24; 116(9):1614-28.
46.    Groh D, Döhler F, Brauer DS. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta biomaterialia. 2014 Oct 1; 10(10):4465-73.
47.    Wei S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable materials for bone defect repair. Military medical research. 2020 Dec; 7:1-25.
48.    .
49.    Mubina MK, Shailajha S, Sankaranarayanan R, Saranya L. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO2-CaO-Na2O-P2O5 nano bioactive glass ceramics. Journal of the Mechanical Behavior of Biomedical Materials. 2019 Dec 1; 100:103379.
50.    Yaqoob AA, Mohd Noor NH, Serra A, Mohamad Ibrahim MN. Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation. Nanomaterials. 2020 May 12; 10(5):932.
51.    Baino F, Kargozar S, editors. Bioactive glasses and glass-ceramics: Fundamentals and applications. John Wiley & Sons; 2022 Jun 17.
52.    Shariatinia Z, Karimzadeh Z. Perovskite oxides as efficient bioactive inorganic materials in tissue engineering: A review. Materials Today Chemistry. 2024 Jan 1; 35:101846.
53.    El-Meliegy E, Van Noort R. Glasses and glass ceramics for medical applications. Springer science & business media; 2011 Dec 2.
54.    Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials. 2012 Dec; 1:1-22.
55.    Yang SY, Kim SH, Choi SY, Kim KM. Acid neutralizing ability and shear bond strength using orthodontic adhesives containing three different types of bioactive glass. Materials. 2016 Feb 24; 9(3):125.
56.    Bahati D, Bricha M, El Mabrouk K. Bioactive Glasses: Structure, Properties, and Processing. Bioceramics: Status in Tissue Engineering and Regenerative Medicine (Part 1). 2024 Nov 28:58.
57.    Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, Franke J, Jung O, Smeets R, Schnettler R, Wenisch S. Applications of metals for bone regeneration. International journal of molecular sciences. 2018 Mar 12; 19(3):826.
58.    Siekkinen M. The impact of dissolution products and solution pH on in vitro behaviour of the bioactive glasses 45S5 and S53P4.
59.    Niculescu AG, Grumezescu AM. An up-to-date review of biomaterials application in wound management. Polymers. 2022 Jan 21; 14(3):421.
60.    Aalto-Setälä L, Siekkinen M, Lindfors N, Hupa L. Dissolution of glass–ceramic scaffolds of bioactive glasses 45S5 and S53P4. Biomedical Materials & Devices. 2023 Sep; 1(2):871-81.
61.    Monfared MH, Nemati A, Loghman F, Ghasemian M, Farzin A, Beheshtizadeh N, Azami M. A deep insight into the preparation of ceramic bone scaffolds utilizing robocasting technique. Ceramics International. 2022 Mar 1; 48(5):5939-54.
62.    Sergi R, Bellucci D, Cannillo V. A comprehensive review of bioactive glass coatings: State of the art, challenges and future perspectives. Coatings. 2020 Aug 3; 10(8):757.
63.    Geurts J, van Vugt T, Thijssen E, Arts JJ. Cost-effectiveness study of one-stage treatment of chronic osteomyelitis with bioactive glass S53P4. Materials. 2019 Sep 30; 12(19):3209.
64.    Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, Zhao H, Lester E, Wu T, Pang CH. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: recent advances, prevention, and treatment. International journal of environmental research and public health. 2020 Apr; 17(7):2323.
65.    Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L. Effect of ion substitution on properties of bioactive glasses: A review. Ceramics International. 2015 Jul 1; 41(6):7241-51.
66.    Kundu B, Mukherjee P. Doped bioactive glass materials in bone regeneration. Advanced techniques in bone regeneration. 2016 Aug 31:275.
67.    No YJ, Li JJ, Zreiqat H. Doped calcium silicate ceramics: a new class of candidates for synthetic bone substitutes. Materials. 2017 Feb 10; 10(2):153.
68.    Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Frontiers in Immunology. 2023 Mar 9; 14:1127704.
69.    Wculek SK, Heras-Murillo I, Mastrangelo A, Mañanes D, Galán M, Miguel V, Curtabbi A, Barbas C, Chandel NS, Enríquez JA, Lamas S. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity. 2023 Mar 14; 56(3):516-30.
70.    D’Arrigo D, Roffi A, Cucchiarini M, Moretti M, Candrian C, Filardo G. Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: a systematic review. Journal of clinical medicine. 2019 Nov 4; 8(11):1867.
71.    Król B, Cywka KB, Skarżyńska MB, Skarżyński PH. Implantation of the Bonebridge BCI 602 after mastoid obliteration with S53P4 bioactive glass: a safe method of treating difficult anatomical conditions-preliminary results. Life. 2021 Apr 22; 11(5):374.
72.    Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016 Apr 1; 84:301-14.
73.    Kumar S, Arora A, Mathur D, Chaudhary A, Pant V, Guchhait S, Singh BK. A review on chitosan and chitosan-based bionanocomposites: Promising biological macromolecules for sustainable corrosion inhibition. International Journal of Biological Macromolecules. 2025 Jan 27:140392
74.    Ielo I, Calabrese G, De Luca G, Conoci S. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. International journal of molecular sciences. 2022 Aug 27; 23(17):9721.
75.    Chen X, Li H, Ma Y, Jiang Y. Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering. Molecules. 2023 Jun 15; 28(12):4790.
76.    Loukelis K, Machla F, Bakopoulou A, Chatzinikolaidou M. Kappa-carrageenan/chitosan/gelatin scaffolds provide a biomimetic microenvironment for dentin-pulp regeneration. International Journal of Molecular Sciences. 2023 Mar 30; 24(7):6465.
77.    Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioactive Materials. 2022 Jan 1; 7:341-63.
78.    Tan G, Xu J, Chirume WM, Zhang J, Zhang H, Hu X. Antibacterial and anti-inflammatory coating materials for orthopedic implants: a review. Coatings. 2021 Nov; 11(11):1401.
79.    Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering. Frontiers in bioengineering and biotechnology. 2019 Jul 5; 7:161.
80.    Shuai C, Zhou J, Wu P, Gao C, Feng P, Xiao T, Deng Y, Peng S. Enhanced stability of calcium sulfate scaffolds with 45S5 bioglass for bone repair. Materials. 2015 Nov 6; 8(11):7498-510.
81.    Shafira Kurnia Supandi, Ni Luh Desy Ayu Susilahati, Lubna, Yasmin Firdausi Rezkika, Agung Krismariono, Ernie Maduratna. Micro Hydroxyapatite in Bone Regeneration: A Literature Review. Research Journal of Pharmacy and Technology. 2024; 17(2):591-4.
82.    Brauer DS. Bioactive glasses—structure and properties. Angewandte Chemie International Edition. 2015 Mar 27; 54(14):4160-81.
83.    Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH. Biomaterials and bioactive natural products from marine invertebrates: From basic research to innovative applications. Marine Drugs. 2022 Mar 22; 20(4):219.
84.    Verné E, Bretcanu OA, Balagna C, Bianchi CL, Cannas M, Gatti S, Vitale-Brovarone C. Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. Journal of Materials Science: Materials in Medicine. 2009 Jan; 20:75-87.
85.    Kurzweil P. Metal oxides and ion-exchanging surfaces as pH sensors in liquids: State-of-the-art and outlook. Sensors. 2009 Jun 23; 9(6):4955-85.
86.    Mansi Shah, Dipti Patel. Development and Characterization of tadalafil solid dispersion using skimmed milk for improved the solubility and Dissolution release profile. Research J. Pharm. and Tech. 2020; 13(12):6212-6217.
87.    Hung CT, Allen FD, Pollack SR, Brighton CT. Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. Journal of biomechanics. 1996 Nov 1; 29(11):1411-7.
88.    Han S, Xie H, Zhang L, Wang X, Zhong Y, Shen Y, Wang H, Hao C. High-performance polyethylenimine-functionalized lignin/silica porous composite microsphere for the removal of hexavalent chromium, phosphate and Congo red from aqueous solutions. Industrial Crops and Products. 2023 Apr 1; 194:116289.
89.    Jin W, Jiang S, Pan H, Tang R. Amorphous phase mediated crystallization: Fundamentals of biomineralization. Crystals. 2018 Jan 19; 8(1):48.
90.    Al-Harbi N, Mohammed H, Al-Hadeethi Y, Bakry AS, Umar A, Hussein MA, Abbassy MA, Vaidya KG, Al Berakdar G, Mkawi EM, Nune M. Silica-based bioactive glasses and their applications in hard tissue regeneration: A review. Pharmaceuticals. 2021 Jan 20; 14(2):75.
91.    Rößler S, Sewing A, Stölzel M, Born R, Scharnweber D, Dard M, Worch H. Electrochemically assisted deposition of thin calcium phosphate coatings at near‐physiological pH and temperature. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003 Mar 15; 64(4):655-63.
92.    Dorozhkin SV. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials. 2009 Nov 27; 2(4):1975-2045.
93.    Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): Preparation, structure, properties, and biomedical applications. Biomaterials Science. 2021; 9(23):7748-98.
94.    Akiladevi D, Raman Suresh Kumar, Arunkumar N. A Review on 3D printing Pharmaceutical Manufacturing and applications on Drug Delivery System. Research J. Pharm. and Tech 2019; 12(2):873-875.
95.    Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From residues to added-value bacterial biopolymers as nanomaterials for biomedical applications. Nanomaterials. 2021 Jun 4; 11(6):1492.
96.    Pupilli F, Ruffini A, Dapporto M, Tavoni M, Tampieri A, Sprio S. Design strategies and biomimetic approaches for calcium phosphate scaffolds in bone tissue regeneration. Biomimetics. 2022 Aug 13; 7(3):112.
97.    Schumacher M, Habibovic P, Van Rijt SJ. Mesoporous bioactive glass composition effects on degradation and bioactivity. Bioactive Materials. 2021 Jul 1; 6(7):1921-31.
98.    Henderson J. Ancient glass: an interdisciplinary exploration. Cambridge University Press; 2013 Feb 11.
99.    Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Journal of biomedical materials research part A. 2010 Oct; 95(1):164-71.
100.    Wan K, Huang L, Yan J, Ma B, Huang X, Luo Z, Zhang H, Xiao T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. Science of the Total Environment. 2021 Jun 15; 773:145535.
101.    Fiume E, Barberi J, Verné E, Baino F. Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. Journal of functional biomaterials. 2018 Mar 16; 9(1):24.
102.    Rahman MM, Salleh MA, Rashid U, Ahsan A, Hossain MM, Ra CS. Production of slow release crystal fertilizer from wastewaters through struvite crystallization–A review. Arabian journal of chemistry. 2014 Jan 1; 7(1):139-55.
103.    Maximov M, Maximov OC, Craciun L, Ficai D, Ficai A, Andronescu E. Bioactive glass—An extensive study of the preparation and coating methods. Coatings. 2021 Nov 13; 11(11):1386.
104.    Oni OP, Hu Y, Tang S, Yan H, Zeng H, Wang H, Ma L, Yang C, Ran J. Syntheses and applications of mesoporous hydroxyapatite: A review. Materials Chemistry Frontiers. 2023; 7(1):9-43.
105.    Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC. Sol–gel based materials for biomedical applications. Progress in materials science. 2016 Apr 1; 77:1-79.
106.    Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E. Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels. 2021 Dec 18; 7(4):275.
107.    Gaweł B, Gaweł K, Øye G. Sol-gel synthesis of non-silica monolithic materials. Materials. 2010 Apr 21; 3(4):2815-33.
108.    Cramer CL, Ionescu E, Graczyk-Zajac M, Nelson AT, Katoh Y, Haslam JJ, Wondraczek L, Aguirre TG, LeBlanc S, Wang H, Masoudi M. Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Journal of the European Ceramic Society. 2022 Jul 1; 42(7):3049-88.
109.    Tomar RS, Chauhan PS, Shrivastava V. A critical review on nanoparticle synthesis: physicochemical v/s biological approach. World J Pharm Res. 2014 Nov 2; 4(1):595-620.
110.    Neščáková Z, Zheng K, Liverani L, Nawaz Q, Galusková D, Kaňková H, Michálek M, Galusek D, Boccaccini AR. Multifunctional zinc ion doped sol–gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioactive materials. 2019 Dec 1; 4:312-21.
111.    Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC advances. 2020; 10(56):33782-835.
112.    Zhou T, Liu X, Liang Z, Liu Y, Xie J, Wang X. Recent advancements in optical microstructure fabrication through glass molding process. Frontiers of Mechanical Engineering. 2017 Mar; 12:46-65.
113.    Dhillon GS. Valorisation de Déchets Agro-industriels Par Bioproduction Fongique D'un Important Produit de Plate Forme (L'acide Citrique) Avec Extraction Simultanée de Chitosane. Institut National de la Recherche Scientifique (Canada); 2012.
114.    Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomaterials Science. 2024. 
115.    `Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Advanced drug delivery reviews. 2023 Aug 1; 199:114904.
116.    Nilawar S, Uddin M, Chatterjee K. Surface engineering of biodegradable implants: Emerging trends in bioactive ceramic coatings and mechanical treatments. Materials Advances. 2021; 2(24):7820-41.
117.    Damiri F, Fatimi A, Musuc AM, Santos AC, Paszkiewicz S, Idumah CI, Singh S, Varma RS, Berrada M. Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications. Journal of Drug Delivery Science and Technology. 2024 Mar 18:105601.
118.    Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KM. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review. Journal of tissue engineering. 2017 Jul 18; 8:2041731417719170.
119.    Knabikaite I, Eisinas A, Baltakys K. Al³+ influence on the formation of calcium silicates by using two step synthesis. InNBCM 2020: international conference on nanostructured bioceramic materials, 1-3 December 2020, Vilnius, Vilnius University: conference book. 2020. Vilnius Univerity Press.
120.    Siddiqui MS, Rabbi MS, Ahmed RU, Alam F, Hossain MA, Ahsan S, Miah NM. Bioinspired Composite Structures: A Comprehensive Review of Natural Materials, Fabrication Methods, and Engineering Applications. Composites Part C: Open Access. 2025 Feb 27:100578.
121.    Świontek S, Środa M, Gieszczyk W. Ceramics, glass and glass-ceramics for personal radiation detectors. Materials. 2021 Oct 12; 14(20):5987.
122.    Madival H, Rajiv A, Muniraju C, Reddy MS. Advancements in Bioactive Glasses: A Comparison of Silicate, Borate, and Phosphate Network Based Materials. Biomedical Materials & Devices. 2025 Mar 3:1-21.
123.    Jia Z, Xu X, Zhu D, Zheng Y. Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science. 2023 Apr 1; 134:101072.
124.    Borges R, Pelosine AM, de Souza AC, Machado Jr J, Justo GZ, Gamarra LF, Marchi J. Bioactive glasses as carriers of cancer-targeted drugs: Challenges and opportunities in bone cancer treatment. Materials. 2022 Dec 19; 15(24):9082.
125.    Chae T. Bio-inspired calcium phosphate/biopolymer nanocomposite fibrous scaffolds for hard tissue regeneration (Doctoral dissertation, University of British Columbia).
126.    Rabab Kamel, Nahla A. El-Wakil, Nermeen A. Elkasabgy. Injectable hydrogel scaffolds composed of Nanocellulose derived from sugarcane bagasse and combined with calcium for Bone regeneration. Research Journal of Pharmacy and Technology 2023; 16(7):3439-0.
127.    Si Han LI, Zhang WJ, Jiang XQ. Applications of bioactive ions in bone regeneration. Chin J Dent Res. 2019; 22(2):93-104.
128.    Yue Y. Revealing the nature of glass by the hyperquenching-annealing-calorimetry approach. Journal of Non-Crystalline Solids: X. 2022 Jun 1; 14:100099.
129.    Grigorian CM, Rupert TJ. Critical cooling rates for amorphous-to-ordered complexion transitions in Cu-rich nanocrystalline alloys. Acta Materialia. 2021 Mar 1; 206:116650.
130.    Kalidasan B, Pandey AK. Next generation phase change materials: state-of-the-art towards sustainable future. Progress in Materials Science. 2024 Sep 29:101380.
131.    Fonseca J, Gong T, Jiao L, Jiang HL. Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A. 2021; 9(17):10562-611.
132.    Kanatzidis MG, Poeppelmeier KR, Bobev S, Guloy AM, Hwu SJ, Lachgar A, Latturner SE, Schaak E, Seo DK, Sevov SC, Stein A. Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Progress in Solid State Chemistry. 2008 Jan 1; 36(1-2):1-33.
133.    Pinet O, Hollebecque JF, Hugon I, Debono V, Campayo L, Vallat C, Lemaitre V. Glass ceramic for the vitrification of high level waste with a high molybdenum content. Journal of Nuclear Materials. 2019 Jun 1; 519:121-7.
134.    Elhadad AA, Romero-Resendiz L, Rossi MC, Rodríguez-Albelo LM, Lascano S, Afonso CR, Alcudia A, Amigó V, Torres Y. Findings and perspectives of β-Ti alloys with biomedical applications: Exploring beyond biomechanical and biofunctional behaviour. Journal of Materials Research and Technology. 2024 Oct 5.
135.    Zhang J, Liu B, Zhang S. A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications. Science of The Total Environment. 2021 Aug 10; 781:146727.
136.    Vichery C, Nedelec JM. Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Materials. 2016 Apr 14; 9(4):288.
137.    Montazerian M, Zanotto ED, Mauro JC. Model-driven design of bioactive glasses: from molecular dynamics through machine learning. International Materials Reviews. 2020 Jul; 65(5):297-321.
138.    Shoushtari MS, Hoey D, Biak DR, Abdullah N, Kamarudin S, Zainuddin HS. Sol–gel templated bioactive glass scaffold: a review. Research on Biomedical Engineering. 2024 Mar; 40(1):281-96.
139.    Ang C. Development of ultra-high temperature ceramic composites by sol-gel processing (Doctoral dissertation, Monash University).
140.    He L, Yin J, Gao X. Additive manufacturing of bioactive glass and its polymer composites as bone tissue engineering scaffolds: a review. Bioengineering. 2023 Jun 1; 10(6):672.
141.    Vogel W. Crystallization of glasses. InGlass Chemistry 1994 (pp. 280-362). Berlin, Heidelberg: Springer Berlin Heidelberg.
142.    Kasper A. Spontaneous cracking of thermally toughened safety glass. Part one: properties of nickel sulphide inclusions. Glass Structures & Engineering. 2019 Oct; 4(3):279-313.
143.    Banik A, Famprikis T, Ghidiu M, Ohno S, Kraft MA, Zeier WG. On the underestimated influence of synthetic conditions in solid ionic conductors. Chemical science. 2021; 12(18):6238-63.
144.    Shoushtari MS, Hoey D, Biak DR, Abdullah N, Kamarudin S, Zainuddin HS. Sol–gel templated bioactive glass scaffold: a review. Research on Biomedical Engineering. 2024 Mar; 40(1):281-96.
145.    Esposito S. “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials. 2019 Feb 23; 12(4):668.
146.    Van Driessche I, Hoste S. Encapsulations Through the Sol‐Gel Technique and their Applications in Functional Coatings. Functional coatings: By polymer microencapsulation. 2006 Jun 6:259-96.
147.    Pina S, Oliveira JM, Reis RL. Natural‐based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials. 2015 Feb; 27(7):1143-69.
148.    Zheng K, Sui B, Ilyas K, Boccaccini AR. Porous bioactive glass micro-and nanospheres with controlled morphology: Developments, properties and emerging biomedical applications. Materials horizons. 2021; 8(2):300-35.
149.    Guarino V. Properties of biomedical foams for tissue engineering applications, Part II. Tissue engineering applications of biomedical foams.:40-70.
150.    Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta biomaterialia. 2017 Oct 1; 61:217-32.
151.    Percival KM, Paul V, Husseini GA. Recent advancements in bone tissue engineering: integrating smart scaffold technologies and bio-responsive systems for enhanced regeneration. International Journal of Molecular Sciences. 2024 May 30; 25(11):6012.
152.    Belluomo R, Khodaei A, Yavari SA. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomaterialia. 2023 Jan 15; 156:234-49.
153.    Sanna R. Synthesis and characterization of new polymeric materials for advanced applications.
154.    Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC advances. 2020; 10(56):33782-835.
155.    Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta biomaterialia. 2010 Aug 1; 6(8):2874-88.
156.    De Leon-Oliva D, Boaru DL, Perez-Exposito RE, Fraile-Martinez O, García-Montero C, Diaz R, Bujan J, García-Honduvilla N, Lopez-Gonzalez L, Álvarez-Mon M, Saz JV. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels. 2023 Nov 8; 9(11):885.
157.    Song X, Segura-Egea JJ, Díaz-Cuenca A. Sol–Gel technologies to obtain advanced bioceramics for dental therapeutics. Molecules. 2023 Jan; 28(19):6967.
158.    Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of sol–gel materials. Journal of Materials Chemistry. 2006; 16(11):1013-30.
159.    Amiri S, Rahimi A. Hybrid nanocomposite coating by sol–gel method: A review. Iranian Polymer Journal. 2016 Jun; 25(6):559-77.
160.    Nawaz Q, de Pablos-Martin A, e Silva JM, Berthold L, Hurle K, Jaimes AT, Sitarz M, Brauer DS, Boccaccini AR. Crystallization study of sol–gel derived 13-93 bioactive glass powder. Journal of the European Ceramic Society. 2021 Feb 1; 41(2):1695-706.
161.    Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V. Manufacturing nanomaterials: from research to industry. Manufacturing Review. 2014; 1:11.
162.    Ropp RC. Inorganic polymeric glasses. Elsevier; 2013 Oct 22.
163.    Anand A, Sengupta S, Kaňková H, Švančárková A, Beltrán AM, Galusek D, Boccaccini AR, Galusková D. Influence of copper-strontium co-doping on bioactivity, cytotoxicity and antibacterial activity of mesoporous bioactive glass. Gels. 2022 Nov 16; 8(11):743.
164.    Orrù R, Licheri R, Locci AM, Cincotti A, Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering: R: Reports. 2009 Feb 12; 63(4-6):127-287.
165.    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale research letters. 2014 Dec; 9:1-3.
166.    Athanassiou EK, Grass RN, Stark WJ. Chemical aerosol engineering as a novel tool for material science: from oxides to salt and metal nanoparticles. Aerosol Science and Technology. 2010 Feb 1; 44(2):161-72.
167.    Pokhrel S, Mädler L. Flame-made particles for sensors, catalysis, and energy storage applications. Energy & Fuels. 2020 Sep 15; 34(11):13209-24.
168.    Lighty JS, Veranth JM, Sarofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association. 2000 Sep 1; 50(9):1565-618.
169.    Wang W. Materials Development for All-Solid State Battery Electrolytes (Doctoral dissertation).
170.    Baino F, Fiume E, Barberi J, Kargozar S, Marchi J, Massera J, Verné E. Processing methods for making porous bioactive glass‐based scaffolds—A state‐of‐the‐art review. International Journal of Applied Ceramic Technology. 2019 Sep; 16(5):1762-96.
171.    Moustafa EB, Elsheikh AH, Taha MA. The effect of TaC and NbC hybrid and mono-nanoparticles on AA2024 nanocomposites: Microstructure, strengthening, and artificial aging. Nanotechnology Reviews. 2022 Jun 28; 11(1):2513-25.
172.    Mehdizade M, Eivani AR, Tabatabaei F, Anijdan SH, Jafarian HR. Enhanced in-vitro biodegradation, bioactivity, and mechanical properties of Mg-based biocomposite via addition of calcium-silicate-based bioceramic through friction stir processing as resorbable temporary bone implant. Journal of Materials Research and Technology. 2023 Sep 1; 26:4007-23.




Recomonded Articles:

Author(s): Sahil Mahajan, Heemani Dave, Santosh Bothe, Debarshikar Mahpatra, Sandeep Sonawane, Sanjay Kshirsagar, Santosh Chhajed

DOI: 10.52711/2231-5691.2022.00038         Access: Open Access Read More

Author(s): Shital Shinde, Aniket Patil, Ravindra Gaikwad

DOI: 10.52711/2231-5691.2022.00054         Access: Open Access Read More

Author(s): Madhuri Deshmukh, Prajakta Zirmire, Pavan Ingole, Tejaswini Deshmukh, Vikram Deshmukh, Arpana Patil

DOI: 10.52711/2231-5691.2025.00043         Access: Closed Access Read More

Author(s): V. Prema, S. Karunika, Yashmi Agwina Xavier

DOI: 10.52711/2231-5691.2025.00033         Access: Closed Access Read More

Author(s): Sejal Vilas Patil, Sameer R Shaikh, Azam Z. Shaikh, Divakar R. Patil, Akash S. Jain

DOI: 10.52711/2231-5691.2025.00034         Access: Closed Access Read More

Author(s): Vedangi Arvind Kulkarni, Mayur Gulab Kharat, Shivani Parmeshwar Chavan, Sarita Khushalrao Metangale, Pratiksha Purushottam Varhade

DOI: 10.52711/2231-5691.2026.00008         Access: Closed Access Read More


Recent Articles




Tags