Author(s): Rutvik B. Date, Jameel Ahmed S. Mulla

Email(s): jameelahmed5@gmail.com

DOI: 10.52711/2231-5691.2026.00004   

Address: Rutvik B. Date1, Jameel Ahmed S. Mulla2*
1Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon - Karad, Maharashtra.
2Professor and Head, Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon - Karad, Maharashtra.
*Corresponding Author

Published In:   Volume - 16,      Issue - 1,     Year - 2026


ABSTRACT:
Nanosponges and hydrogels represent a novel convergence in advanced drug delivery systems. Nanosponges, with their highly porous structures, are effective at encapsulating and delivering therapeutic agents under strict control. They enhance drug solubility, bioavailability, and provide targeted delivery to reduce systemic side effects. Hydrogels, known for their three-dimensional, hydrophilic networks, complement nanosponges by offering biocompatibility, biodegradability, and stimuli-responsive controlled release. The integration of nanosponges into hydrogels synergistically combines the strengths of materials, improving drug release profiles and maintaining therapeutic levels over extended periods. This review focuses on anti-inflammatory drug delivery, highlighting the capacity of nanosponge-loaded hydrogels to deliver nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids effectively. Characterization studies, including morphological and swelling behavior analysis, confirm the system's potential for sustained and localized drug release. Therapeutic evaluations, both in vivo and in vitro, show improved efficacy and reduced side effects. The innovation offers promising applications in managing chronic inflammatory diseases, wound healing, and gastrointestinal disorders, presenting a pathway toward safer and more effective anti-inflammatory therapies.


Cite this article:
Rutvik B. Date, Jameel Ahmed S. Mulla. Nanosponges Loaded Hydrogels for Anti-Inflammatory Drug Delivery: Characterization Evaluation and Applications. Asian Journal of Pharmaceutical Research. 2026; 16(1):27-2. doi: 10.52711/2231-5691.2026.00004

Cite(Electronic):
Rutvik B. Date, Jameel Ahmed S. Mulla. Nanosponges Loaded Hydrogels for Anti-Inflammatory Drug Delivery: Characterization Evaluation and Applications. Asian Journal of Pharmaceutical Research. 2026; 16(1):27-2. doi: 10.52711/2231-5691.2026.00004   Available on: https://asianjpr.com/AbstractView.aspx?PID=2026-16-1-4


REFERENCES:
1.    Ahire PS, Bhambere DS, Patil MP, Kshirsagar SJ. Recent advances in nanosponges as a drug delivery system. Indian J Drugs. 2020; 8(1):8–17.
2.    Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2010; 68(1):183–91.
3.    Ghezzi M, Pescina S, Sanna V, Del Favero E, Cantù L, Nicoli S. Cyclodextrin nanosponges: a promising tool for the delivery of natural compounds. J Incl Phenom Macrocycl Chem. 2018; 92:1–11.
4.    Atchaya J, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS CoV 2 management. BioNanoScience. 2022; 12:1018–31.
5.    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000; 50(1): 27–46.
6.    Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, et al. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel). 2020; 12(11):2702.
7.    Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, et al. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022; 27(9): 2902.
8.    Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014; 190: 15–28.
9.    Mulla JAS, Chalke PM, Londhe SP, Patil MA, Nalawade SN, Sawant RR. Design and Optimization of Nanosponges of Poorly Soluble Voriconazole Using Central Composite Design. Indian Journal of Novel Drug Delivery. 2023; 15(4): 189-199.
10.    Mhoprekar JD. Mulla JAS. Nanosponges drug delivery: A concise review. World Journal of Nanoparticle Research. 2023; 1(1): 17-28.
11.    Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. Nanomedicine. 2007; 3(2):105–17.
12.    Trotta F, Tumiatti W, Cavalli R, Roggero C, Mognetti B, Berta G. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem. 2009; 65(1):69–79.
13.    Cavalli R, Leone F, Minelli R, Fantozzi R, Valente M, Trotta F, et al. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. J Incl Phenom Macrocycl Chem. 2006; 56(1–2): 209–13.
14.    Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterization. J Incl Phenom Macrocycl Chem. 2011; 69(1–2): 139–47.
15.    Selvamuthukumar S, Anandam S. Nanosponges: A novel class of drug delivery system—Review. J Pharm Pharm Sci. 2012; 15(1): 103–11.
16.    Liang X, Wang L, Wang Y, He X, Xu X. Cyclodextrin-based nanosponges for delivery of chemotherapeutic anticancer drugs: Design, development, and future prospects. Molecules. 2016; 21(8): 1174.
17.    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing, and application of hydrogels: A review. Mater Sci Eng C. 2015; 57: 414–33.
18.    Peppas NA, Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2021; 168: 1–3.
19.    Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimuli-responsive hydrogels: Theory, modern advances, and applications. Mater Sci Eng R Rep. 2015; 93: 1–49.
20.    Tejashri G, Amrita B, Darshana J. Cyclodextrin-based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013; 63(3): 335–58.
21.    Abou Taleb S, Moatasim Y, GabAllah M, Asfour MH. Quercitrin-loaded cyclodextrin-based nanosponge as a promising approach for management of lung cancer and COVID-19. J Drug Deliv Sci Technol. 2022; 77: 103921.
22.    Farsana P, Sivakumar R, Haribabu Y. Hydrogel-based nanosponges drug delivery for topical applications: An updated review. Res J Pharm Technol. 2021; 14(1): 527–30.
23.    Kaur S, Kumar S. The nanosponges: an innovative drug delivery system. Asian J Pharm Clin Res. 2019; 12(1): 60–7.
24.    Sharma R, Pawar YB, Gopinath P, Kulkarni G, Kesarla R, Murthy RSR. Nanosponges: Versatile nanocarriers for drug delivery. Mater Sci Eng C. 2019; 102: 849–62.
25.    Patil KS, Mulla JAS. A Review on Microemulsion Based Hydrogel for Topical Drug Delivery. World Journal of Molecular Pharmaceutics. 2023; 1(1): 22-33.
26.    Mulla JAS, Karande BS. Microemulsion based hydrogel formulation for topical drug delivery - A concise review. Indian Journal of Novel Drug Delivery. 2021; 13(2): 63-69.
27.    Sahu A, Kasoju N, Goswami P, Bora U. Nanosponges: A novel platform for targeted drug delivery and imaging. J Control Release. 2020; 320: 329–45.
28.    Kumar S, Rao R. Analytical tools for cyclodextrin nanosponges in the pharmaceutical field: A review. J Incl Phenom Macrocycl Chem. 2019; 93(1): 1–20.
29.    Sachan A, Gupta A, Arora M. Formulation and characterization of nanostructured lipid carrier (NLS)-based gel for topical delivery of etoricoxib. J Drug Deliv Ther. 2016; 6(2): 4–13.
30.    Mulla JA, Mabrouk M, Choonara YE, Kumar P, Chejara DR, du Toit LC, Pillay V. Development of respirable rifampicin-loaded nano-lipomer composites by microemulsion-spray drying for pulmonary delivery. Journal of Drug Delivery Science and Technology. 2017 Oct 1; 41:13-19.
31.    Mabrouk M, Mulla JA, Kumar P, Chejara DR, Badhe RV, Choonara YE, du Toit LC, Pillay V. Intestinal targeting of ganciclovir release employing a novel HEC-PAA blended lyomatrix. AAPSPharmScitech. 2016 Oct; 17(5):1120-30.
32.    Vidya Ashok Kheradkar, Jameel Ahmed S Mulla. Nanosuspension: A Novel Technology for Drug Delivery. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(2): 106-110.
33.    Mulla JAS, Hajare SC, Doijad RC. Particle Size and It’s Importance in Industrial Pharmacy: A Review. Indian Journal of Novel Drug delivery. 2016; 8(4):191-198.
34.    Mulla JA, Suresh S, Khazi IM. Formulation, Characterization and in vitro Evaluation of Methotrexate Solid Lipid Nanoparticles. Research J. Pharm. and Tech. 2009; 2 (4): 685-689.
35.    Mulla JAS, Khazi MIA, Khan AY, Gong YD, Khazi IAM. Design, Characterization and In vitro Evaluation of Imidazo[2, 1-b][1, 3, 4]thiadiazole Derivative Loaded Solid Lipid Nanoparticles. Drug Invention Today. 2012; 4(8): 420-423.
36.    Gupta NV, Shivakumar HG. Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran J Pharm Res. 2012; 11(2):481–93.
37.    Chakorkar SS, Mulla JAS. Cubosome-based Corticosteroidal Drug Delivery System for Sustained Ocular Delivery: A Pharmacokinetic Investigation. Ind. J. Pharm. Edu. Res. 2024; 28(2s): s502-s514.
38.    Pyrak B, Rogacka-Pyrak K, Gubica T, Szeleszczuk Ł. Exploring cyclodextrin-based nanosponges as drug delivery systems: Understanding the physicochemical factors influencing drug loading and release kinetics. Int J Mol Sci. 2024; 25(6):3527.
39.    Wojcik-Pastuszka D, Krzak J, Macikowski B, Berkowski R, Osinski B, Musial W. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials (Basel). 2019; 12(8):1202.
40.    Shoaib Q, Abbas N, Irfan M, Hussain A, Arshad MS, Hussain SZ. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop J Pharm Res. 2018; 17(8): 1465–74.
41.    Kumar S, Pooja, Trotta F, Rao R. Encapsulation of Babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics. 2018; 10: 169.
42.    Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine-loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2017; 41: 344–50.
43.    Jadhav NV, Vavia PR. Supercritical processed starch nanosponge as a carrier for enhancement of dissolution and pharmacological efficacy of fenofibrate. Int J Biol Macromol. 2017; 99:713–20.
44.    Vigata M, Meinert C, Hutmacher DW, Bock N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 2020; 12(12):1188.
45.    Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, et al. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials (Basel). 2020; 10(9): 1649.
46.    de la Fuente-Jiménez JL, Martínez-Martínez M, Del Pozo M, Sánchez-Ovejero C, Abad-Morales M, Vidal-González J, et al. A comparative and critical analysis for in vitro cytotoxic evaluation of magneto-crystalline zinc ferrite nanoparticles using MTT, crystal violet, LDH, and apoptosis assay. Int J Mol Sci. 2023; 24(16): 12860.
47.    Vajja BN, Juluri S, Kumari M, Kole L, Chakrabarti R, Joshi VD. Lipopolysaccharide-induced paw edema model for detection of cytokine modulating anti-inflammatory agents. Int Immunopharmacol. 2004; 4(7): 901–9.
48.    Ashok B, Kumar Naik KH, Mulla JAS, Naik N. An agile synthesis of 5-phenyl-1, 2, 3-selenadiazoles by using dabco as an efficient catalyst and their analgesic and anti-inflammatory activity. Indo American Journal of Pharmaceutical Research. 2015; 5(4): 1404-1410.
49.    Kumar Naik KH, Ashok B, Naik N, Mulla JAS, Prakasha A. DNA binding, anti-inflammatory and analgesic evaluation of metal complexes of N/S/O donor ligands; Synthesis, spectral characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 141:88-93.
50.    Jain V, Jain N, Jain S. Pharmacokinetic studies of nanosponges in drug delivery systems. Expert Opin Drug Deliv. 2018; 15(3):235–45.
51.    Giusti L, Bini F, Scandroglio R, Gori A, Gheri G, Rossi C, et al. Hydrogels for wound healing applications: A critical review. Adv Mater Sci Eng. 2021; 10:198–210.
52.    Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations, and marketed products. Int J Pharm. 2020; 586:119560.
53.    Li X, Xu X, Xu M, Geng Z, Ji P, Liu Y. Hydrogel systems for targeted cancer therapy. Front Bioeng Biotechnol. 2023; 11: 1140436.
54.    Zhang L, Wang Z, Zhou Y, Wei Y, Li X, Xu J. Sustained anti-inflammatory effects of ibuprofen-loaded nanosponges in hydrogel formulation. J Control Release. 2021; 331: 101–10.
55.    Li M, Xie L, Ren Y, Tian W, Wei F. Curcumin-loaded nanosponges for the treatment of inflammatory bowel disease: Formulation and in vivo studies. Int J Nanomedicine. 2020; 15: 1953–65.
56.    Chen W, Liu P. Fluorescent carbon quantum dots-based prodrug nanosponges with outstanding tumor-specific drug delivery and imaging. Adv Powder Technol. 2022; 33(11): 103816.
57.    Hafiz MA, Ghauri MA, Abbas N, Hussain T, Bukhari NI. Development of cervix-targeted hydrogel carrier for carboplatin-loaded nanosponges: In-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol. 2023; 84: 104472.
58.    Lamy L, François M, Bezdetnaya L, Yakavets I. Phototoxicity of temoporfin-loaded cyclodextrin nanosponges in stroma-rich three-dimensional models of head and neck cancer. Eur J Pharm Biopharm. 2023; 184: 1–6.
59.    Gangadharappa HV, Chandra Prasad SM, Singh RP. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J Drug Deliv Sci Technol. 2017; 41: 488–501.
60.    Srivastava S, Mahor A, Singh G, Bansal K, Singh PP, Gupta R, et al. Formulation development, in vitro and in vivo evaluation of topical hydrogel formulation of econazole nitrate-loaded β-cyclodextrin nanosponges. J Pharm Sci. 2021; 110(11): 3702–14.




Recomonded Articles:

Author(s): Sonali Syal, Vinay Pandit, M. S Ashawat

DOI: 10.5958/2231-5691.2020.00034.9         Access: Open Access Read More

Author(s): Ashok Thulluru, Nawaz Mahammed, C. Madhavi, K. Nandini, S. Sirisha, D. Spandana

DOI: 10.5958/2231-5691.2019.00016.9         Access: Open Access Read More

Author(s): AK Meena, MM Rao, RP Meena, P Panda, Renu

DOI:         Access: Open Access Read More

Author(s): Kaustubh V. Gavali, Manohar D. Kengar, Kiran V. Chavan, Vaishnavi P. Anekar, Naziya I. Khan

DOI: 10.5958/2231-5691.2019.00020.0         Access: Open Access Read More

Author(s): Hiral A. Makadia, Ami Y. Bhatt, Ramesh B. Parmar, Ms. Jalpa S. Paun, H.M. Tank

DOI:         Access: Open Access Read More

Author(s): B.A. Bhairav, J.K. Bachhav, R.B. Saudagar

DOI: 10.5958/2231-5691.2016.00025.3         Access: Open Access Read More

Author(s): Vani Mamillapalli, Latha Sri Kondaveeti, Ratna Harika Chapala, Tejaswi Komal Sai. Sareddu, Santhi Pattipati, Padmalatha Khantamneni

DOI: 10.52711/2231-5691.2022.00014         Access: Open Access Read More

Author(s): Binoy Varghese Cheriyan, Sabartina scarlet, Priyadarshini, Shailesh joshi, Santhseelan, Sheik Mohamed

DOI: 10.5958/2231-5691.2019.00032.7         Access: Open Access Read More

Author(s): Ghanshyam Dhalendra, Trilochan Satapathy, Amit Roy

DOI:         Access: Open Access Read More

Author(s): Rutuja S. Shah, Rutuja R. Shah, Manoj M. Nitalikar, Chandrakant S. Magdum

DOI: 10.5958/2231-5691.2017.00024.7         Access: Open Access Read More

Author(s): Prajapati M., Mandloi R., Pillai S, Birla N.

DOI: 10.5958/2231-5691.2020.00021.0         Access: Open Access Read More

Author(s): Sarika V. Khandbahale

DOI: 10.5958/2231-5691.2019.00021.2         Access: Open Access Read More

Author(s): Rina G. Maskare, Ayush P. Agrawal, Mayuri S. Pal, Jidnyasa R. Yerne, Megham Chaudhri, Anup R. Bawankar, Gaytri B. Sonkusre

DOI: 10.52711/2231-5691.2022.00025         Access: Open Access Read More

Author(s): Prathap Kumar Kothapalli, Jagadeesh. S. Sanganal, N.B. Shridhar

DOI:         Access: Open Access Read More

Author(s): S.K. Purohit, R. Solanki, V. Mathur, M. Mathur

DOI:         Access: Open Access Read More

Author(s): Bhushan P. Gayakwad, Shashikant D. Barhate, Mayur S. Jain

DOI: 10.5958/2231-5691.2017.00039.9         Access: Open Access Read More

Author(s): Mercy Mathew, Ravikumar, Simila Madathil, Anju Govind, Narayana Swamy VB

DOI: 10.5958/2231-5691.2016.00015.0         Access: Open Access Read More

Author(s): Vidya Dange , Shubhangi Shid, C.S. Magdum ,S.K. Mohite, M.M. Nitalikar

DOI: 10.5958/2231-5691.2015.00032.5         Access: Open Access Read More


Recent Articles




Tags