Author(s):
Mayur Gulab Kharat, Vedangi Arvind Kulkarni, Shivani Parmeshwar Chavan, Nilesh Bhimrao Gawali, Shivali Manohar Khandarkar
Email(s):
mayurkharat090802@gmail.com , vedangikulkarni2@gmail.com
DOI:
10.52711/2231-5691.2026.00001
Address:
Mayur Gulab Kharat, Vedangi Arvind Kulkarni, Shivani Parmeshwar Chavan, Nilesh Bhimrao Gawali, Shivali Manohar Khandarkar
Department of Pharmaceutics, Satyajeet College of Pharmacy, Mehkar, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2026
ABSTRACT:
Messenger RNA (mRNA) technology, which has attracted considerable attention because of new vaccines for COVID-19, is now being explored for new treatment possibilities outside of infectious disease. One of the most tantalizing uses of mRNA technology is mRNA therapeutics for treating and modulating autoimmune disease. Autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and type 1 diabetes, occur because of aberrant immune immune responses that attack self-tissue. Standard treatment for autoimmune disease is generally a form of broad immunosuppression that can have unwanted side effects and increased risk of infection. mRNA technology offers a more target and potentially safer way to direct cells to produce therapeutic proteins that promote immune tolerance or modulate inflammatory pathways. Recent preclinical and early clinical studies demonstrate that mRNA constructs are capable of selectively modulating immune responses, either by encoding tolerogenic antigens or cytokine regulators, or by submitting cell specific peptides. The mRNA platform also allows for rapid customization and scaling of therapies, which represents a significant opportunity for developing personalized therapies built around each patient’s specific immunologic profile. There are still hurdles related to improving delivery systems, sustaining durability of response, and limiting off-target effects, however, enhancements in lipid nanoparticle formulations and in the engineering of mRNA sequences are quickly resolving these issues. As the field continues to advance, mRNA targeted therapies can potentially revolutionize care of autoimmune diseases and give hope for prolonged periods of remission with improved quality of life outcomes. This review will summarize the current state of the art, recent advances, and future potential of mRNA therapeutics in the care of autoimmune disease.
Cite this article:
Mayur Gulab Kharat, Vedangi Arvind Kulkarni, Shivani Parmeshwar Chavan, Nilesh Bhimrao Gawali, Shivali Manohar Khandarkar. mRNA Technology Beyond Vaccines: Exploring Potential mRNA-Based Therapies for Autoimmune Diseases. Asian Journal of Pharmaceutical Research. 2026; 16(1):11. doi: 10.52711/2231-5691.2026.00001
Cite(Electronic):
Mayur Gulab Kharat, Vedangi Arvind Kulkarni, Shivani Parmeshwar Chavan, Nilesh Bhimrao Gawali, Shivali Manohar Khandarkar. mRNA Technology Beyond Vaccines: Exploring Potential mRNA-Based Therapies for Autoimmune Diseases. Asian Journal of Pharmaceutical Research. 2026; 16(1):11. doi: 10.52711/2231-5691.2026.00001 Available on: https://asianjpr.com/AbstractView.aspx?PID=2026-16-1-1
REFERENCES:
1. Ketaki Shinde, Sonam Bendre, Niraj Kale, Suhit Gilda. The mRNA Vaccine Heralds a New Era in Vaccinology. Asian Journal of Pharmacy and Technology. 2022; 12(3): 257-5
2. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018; 17(4): 261–279. https://doi.org/10.1038/nrd.2017.243
3. Haabeth OA, Blake TR, McKinlay CJ, et al. Local delivery of ox40l, Cd80, and Cd86 mRNA kindles global anticancer immunity. Cancer Res. 2019; 79(7): 1624–1634.
4. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019; 27(4): 710–728. https://doi.org/10.1016/j.ymthe.2019.02.012
5. Wajid Ahmad, Rihan Jawed. An Updated Review on Preparation and Characterization of Solid Lipid Nanoparticles. Asian Journal of Pharmacy and Technology; 12(4):313-9.
6. Krienke, C., Kolb, L., Diken, E., Streuber, M., Kirchhoff, S., Bukur, T. and Sahin, U. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021; 371(6525): 145–153. https://doi.org/10.1126/science.aay3638
7. Schneeberger A, Tenenbaum L. mRNA-based gene therapy: a new era for rare genetic diseases? Gene Ther. 2020; 27(9):411–416. https://doi.org/10.1038/s41434-020-0142-6
8. Wajid Ahmad, Rihan Jawed. An Updated Review on Preparation and Characterization of Solid Lipid Nanoparticles. Asian Journal of Pharmacy and Technology; 12(4):313-9.
9. Hou, X., Zaks, T., Langer, R., and Dong, Y. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials. 2021; 6(12): 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
10. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019; 10: 594.
11. A. K. Das Mohapatra. Determinants of Corporate Capital Structure: Evidence from Indian Industries. Asian J. Management. 2012; 3(1): 10-13
12. Leuschner F, Dutta P. mRNA therapy in cardiovascular disease. Circ Res. 2021; 128(6): 811–26.
13. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, Phillips J. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New England Journal of Medicine. 2021 Aug 5; 385(6): 493-502.
14. Kormann MS, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011; 29(2): 154–57.
15. Pardi, N., Hogan, M. J., Porter, F. W., and Weissman, D. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. 2018; 17(4): 261–279. https://doi.org/10.1038/nrd.2017.243
16. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, Phillips J. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New England Journal of Medicine. 2021 Aug 5; 385(6): 493-502
17. A. K. Das Mohapatra. The Changing Role of HR in Corporate Value Creation. Asian J. Management. 2012; 3(2): 59-61
18. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014; 13(10): 759–80
19. Mohammed Rizwan B., Sucharitha P., Jaibiba P. Nano Probes for mRNA Detection than using in-situ Hybridization and hence the use of Nano Particles in Cancer Diagnosis and Therapy. Asian J. Pharm. Tech. 2013; 3(4): 213-217
20. Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2019; 28: 100766. https://doi.org/10.1016/j.nantod.2019.100766
21. Van Hoecke L, Verbeke R, Dewitte H, Lentacker I. The status of messenger RNA-based vaccines in the race against COVID-19. Curr Opin Pharmacol. 2021; 60:1–9.
22. Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019; 27(4): 757–772. https://doi.org/10.1016/j.ymthe.2019.01.020
23. Kauffman KJ, Dorkin JR, Yang JH, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015; 15(11): 7300–7306.
24. Kowalski, P. S., Rudra, A., Miao, L., and Anderson, D. G. (). Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Molecular Therapy. 2019; 27(4): 710–728. https://doi.org/10.1016/j.ymthe.2019.02.012
25. Wang H, Zhu X, Yan Y, et al. mRNA therapy for myocardial infarction. Curr Pharm Des. 2020; 26(36): 4645–56.
26. Effect of protocatechuic acid on TNF- mRNA level in the liver of Hepatotoxicity rats. Mary Charlet R., Anuradha R.. Research J. Pharma. Dosage Forms and Tech. 2012; 4(6): 324-327.
27. Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines (Basel). 2021; 9(2): 97.
28. Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother. 2011; 34(1):1–15.
29. Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother. 2021; 142: 111953. https://doi.org/10.1016/j.biopha.2021.111953
30. Thess A, Grund S, Mui BL, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. 2015; 23(9): 1456–1464.
31. Phua, K. K., Nair, S. K., and Leong, K. W. Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale. 2014; 6(14): 7715–7729. https://doi.org/10.1039/C4NR00668G
32. Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines. 2020; 5:11.
33. Lorenz C, Fotin-Mleczek M, Roth G, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011; 8(4): 627–636.
34. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019; 10: 594.
35. Ramachandran S, Chen J, et al. Nanoparticle-delivered mRNA therapy in cardiac regeneration. Trends Cardiovasc Med. 2022; 32(2): 115–25.
36. Sahin U, Türeci Ö. mRNA-based cancer immunotherapy. Immunity. 2020; 52(4):597–613.
37. Mahardian Rahmadi, Zuhaela Iqbal, Ikbar Nanda Pratama, Rifky Anindita Karunia, Arina Derry Puspitasari, Khoirotin Nisak, Aniek Setiya Budiatin. PEG-4000 Ameliorates morphine-induced constipation in mice through inhibition of AQP-3 mRNA Expression. Research Journal of Pharmacy and Technology. 2023; 16(7): 3331-8
38. Scangos K, Weissman D, Karikó K. mRNA technology: the dawn of a new era in vaccinology and therapeutics. Nat Biotechnol. 2022; 40(5): 678–85.
39. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014; 13(10): 759–80.
40. Kaczmarek, J. C., Patel, A. K., Kauffman, K. J., Fenton, O. S., Webber, M. J., Heartlein, M. W., and Anderson, D. G. (2016). Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angewandte Chemie International Edition, 55(44), 13808–13812. https://doi.org/10.1002/anie.201606524
41. G. Sindhu. A Study on Employer Branding Strategies for Talent Retention. Asian J. Management. 2016; 7(1): 23-26
42. Nance KD, Meier JL. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci. 2021; 7(5): 748–756. https://doi.org/10.1021/acscentsci.1c00173
43. Kaczmarek, J. C., Patel, A. K., Kauffman, K. J., Fenton, O. S., Webber, M. J., Heartlein, M. W., and Anderson, D. G. (2016). Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angewandte Chemie International Edition, 55(44), 13808–13812. https://doi.org/10.1002/anie.201606524
44. Ramachandran, S., Satapathy, S. R., Dutta, T. mRNA therapeutics in regenerative medicine: New dawn for functional tissue recovery. Advanced Drug Delivery Reviews. 2022; 182: 114115. https://doi.org/10.1016/j.addr.2021.114115
45. Wang Y, Su HH, Yang Y, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. 2013; 21(2):358–367.
46. Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer. 2021; 20(1): 33.
47. Feldman RA, Fuhr R, Smolenov I, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults. Vaccine. 2019; 37(25): 3326–3334.
48. Reichmuth AM, Oberli MA, Jeklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016; 7(5): 319–334
49. Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T. N1-methyl-pseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines. Mol Ther Nucleic Acids. 2015; 1:e83. https://doi.org/10.1038/mtna.2014.8
50. Ghosh S, Brown A, Han H, et al. mRNA delivery for cardiovascular disease therapy. Adv Drug Deliv Rev. 2022; 183: 114127
51. Zhang H, Onuma K, Peterson S, et al. Targeted delivery of mRNA to pancreatic β-cells using engineered exosomes. Mol Ther. 2021; 29(5): 1620–1632.
52. Freyn AW, da Silva JR, Rosado VC, et al. mRNA-based vaccines combine individualized and off-the-shelf strategies. Front Immunol. 2021; 12: 682481
53. Hewitt SL, Bai A, Bailey D, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci Transl Med. 2019; 11(477): eaat9143.
54. Kowalski, P. S., Rudra, A., Miao, L., and Anderson, D. G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Molecular Therapy. 2019; 27(4): 710–728. https://doi.org/10.1016/j.ymthe.2019.02.012