Author(s):
S Surita Ghosh, Sushruta Chakraborty
Email(s):
suritaghosh3@gmail.com , sushrutachakraborty22@gmail.com
DOI:
10.52711/2231-5691.2026.00005
Address:
S Surita Ghosh1*, Sushruta Chakraborty2
1Assistant Professor, Department of Pharmaceutics, Dr. B.C. Roy College of Pharmacy and AHS, Durgapur.
2Assistant Professor, Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and AHS, Durgapur.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2026
ABSTRACT:
Tuberculosis (TB) remains a major global health concern, causing significant morbidity and mortality worldwide. The major aim on this compressive review is to provides an overview of TB, which focused on its epidemiology, etiology, diagnostic methods, and clinical manifestations. This article also described the treatment protocols of 1st line drug emphasizing their effectiveness, mechanisms of action, and challenges in administration. Standard treatment regimens for TB typically involve a combination of antibiotics, with first-line drugs. Directly observed therapy (DOT) is recommended to ensure treatment adherence and reduce the risk of drug resistance. Despite effective treatment options, challenges such as drug resistance, co-infection with HIV, and inadequate healthcare infrastructure in resource-limited settings continue to pose obstacles to TB control. The primary treatment approach for TB involves a regimen of first-line drugs, which are crucial for effective management and control of the disease. The cornerstone of first-line TB treatment includes medications such as isoniazid, rifampicin, ethambutol, and pyrazinamide, which work synergistically to target different stages of this diseases. Understanding the pharmacological properties and potential side effects of these drugs is essential for optimizing treatment outcomes and minimizing resistance development. These reviews current guidelines and strategies for the administration and monitoring of first-line TB drugs, highlighting the importance of patient adherence to ensure successful treatment. Additionally, it discusses ongoing research efforts aimed at improving drug efficacy, reducing treatment duration, and addressing emerging drug resistance issues. Effective management of TB with first-line drugs remains critical in achieving global TB control targets and improving public health outcomes worldwide.
Cite this article:
S Surita Ghosh, Sushruta Chakraborty. A Review on Unveiling the Impact of First –Line Anti Tubercular Drugs in Tuberculosis Management. Asian Journal of Pharmaceutical Research. 2026; 16(1):33-3. doi: 10.52711/2231-5691.2026.00005
Cite(Electronic):
S Surita Ghosh, Sushruta Chakraborty. A Review on Unveiling the Impact of First –Line Anti Tubercular Drugs in Tuberculosis Management. Asian Journal of Pharmaceutical Research. 2026; 16(1):33-3. doi: 10.52711/2231-5691.2026.00005 Available on: https://asianjpr.com/AbstractView.aspx?PID=2026-16-1-5
REFFERENCES:
1. Chakraborty S, Rhee KY. Tuberculosis Drug Development: History and Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect Med. 2015 Apr 15;5(8):a021147. doi: 10.1101/cshperspect.a021147. PMID: 25877396; PMCID: PMC4526730.
2. Sagavkar Sandhyarani R, Devkar Swati R. Tuberculosis: A Review. Asian J. Pharm. Res. 2018; 8(3): 191-194. doi: 10.5958/2231-5691.2018.00033.3
3. Lalit Kumar, Rajan, Vivek Sharma. Tuberculosis: A Brief Overview. Asian J. Pharm. Res. 2012; 2(2): 59-62.
4. Monesh O. Patil, Yogesh S. Mali, Paresh A. Patil, D. R. Karnavat. Development of Immunotherapeutic Nanoparticles for treatment of Tuberculosis. Asian J. Pharm. Res. 2020; 10(3): 226-232. doi: 10.5958/2231-5691.2020.00039.8
5. Sourabh D Jain, Arun Kumar Gupta. Chemistry of Fluoroquinones in The Management of Tuberculosis (TB): An Overview. Asian J. Pharm. Res. 2021; 11(1): 55-59. doi: 10.5958/2231-5691.2021.00011.3
6. Kaufmann S.H., Schaible U.E. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 2005; 13: 469–475. doi: 10.1016/j.tim.2005.08.003
7. Luies L., du Preez I. The Echo of Pulmonary Tuberculosis: Mechanisms of Clinical Symptoms and Other Disease-Induced Systemic Complications. Clin. Microbiol. Rev. 2020;33:e00036-20. doi: 10.1128/CMR.00036-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
8. Flynn J.L., Chan J. Tuberculosis: Latency and Reactivation. Infect. Immun. 2001; 69: 4195–4201. doi: 10.1128/IAI.69.7.4195-4201.2001.
9. Sotgiu G, Centis R, D'ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015 Jan 8; 5(5): a017822. doi: 10.1101/cshperspect.a017822. PMID: 25573773; PMCID: PMC4448591.
10. Niccolò Riccardi, Diana Canetti, Paola Rodari, Giorgio Besozzi, Laura Saderi, Marco Dettori, Luigi R. Codecasa, Giovanni Sotgiu,
11. Harshada R Bandgar. Side Effects of TB Therapy and Recent Therapeutic Approaches for Tuberculosis Management. Asian Journal of Pharmaceutical Research. 2023; 13(1): 31-3. doi: 10.52711/2231-5691.2023.00005
12. Tuberculosis and pharmacological interactions: A narrative review, Current Research in Pharmacology and Drug Discovery, Volume 2,2021,
13. Dartois, V.A., Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol. 2022; 20: 685–701.
14. Ameya D. Bendre, Peter J. Peters, Janesh Kumar, Tuberculosis: Past, present and future of the treatment and drug discovery research, Current Research in Pharmacology and Drug Discovery. 2021; 2.
15. C. Sekaggya-Wiltshire, A. von Braun, A. U. Scherrer, Y. C. Manabe, A. Buzibye, D. Muller, B. Ledergerber, U. Gutteck, N. Corti, A. Kambugu, P. Byakika-Kibwika, M. Lamorde, B. Castelnuovo, J. Fehr, M. R. Kamya, Anti-TB drug concentrations and drug-associated toxicities among TB/HIV-coinfected patients, Journal of Antimicrobial Chemotherapy. 2017; 72(4): 1172–1177,
16. Nunn, A.J., Rusen, I., Van Deun, A. et al. Evaluation of a standardized treatment regimen of anti-tuberculosis drugs for patients with multi-drug-resistant tuberculosis (STREAM): study protocol for a randomized controlled trial. Trials. 2014; 15, 353. https://doi.org/10.1186/1745-6215-15-353
17. obin EH, Tristram D. Tuberculosis. [Updated 2024 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2024 https://www.ncbi.nlm.nih.gov/books/NBK441916/
18. Arvind Natarajan, P.M. Beena, Anushka V. Devnikar, Sagar Mali, A systemic review on tuberculosis, Indian Journal of Tuberculosis. 2020; 67(3): 295-311,
19. Migliori G.B., Tiberi S., Zumla A., Petersen E., Chakaya J.M., Wejse C., Muñoz Torrico M., Duarte R., Alffenaar J.W., Schaaf H.S., et al. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int. J. Infect. Dis. 2020; 92S: S15–S25. doi: 10.1016/j.ijid.2020.01.042.
20. Nahid P., Mase S.R., Migliori G.B., Sotgiu G., Bothamley G.H., Brozek J.L., Cattamanchi A., Cegielski J.P., Chen L., Daley C.L., et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2019; 200: e93–e142. doi: 10.1164/rccm.201909-1874ST.
21. Louw G.E., Warren R.M., van Pittius N.C.G., Leon R., Jimenez A., Hernandez-Pando R., McEvoy C.R.E., Grobbelaar M., Murray M., van Helden P.D., et al. Rifampicin Reduces Susceptibility to Ofloxacin in Rifampicin-resistant Mycobacterium tuberculosis through Efflux. Am. J. Respir. Crit. Care Med. 2011; 184: 269–276. doi: 10.1164/rccm.201011-1924O
22. Mudde S.E., Upton A.M., Lenaerts A., Bax H.I., De Steenwinkel J.E.M. Delamanid or pretomanid? A Solomonic judgement! J. Antimicrob. Chemother. 2022; 77: 880–902. doi: 10.1093/jac/dkab505. [DOI] [PMC free article] [PubMed] [Google Scholar
23. Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci. 2023 Mar 8;24(6):5202. doi: 10.3390/ijms24065202. PMID: 36982277; PMCID: PMC10049048.
24. Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci. 2023 Mar 8; 24(6): 5202. doi: 10.3390/ijms24065202. PMID: 36982277; PMCID: PMC10049048.
25. Bruch E.M., Petrella S., Bellinzoni M. Structure-Based Drug Design for Tuberculosis: Challenges Still Ahead. Appl. Sci. 2020; 10: 4248. doi: 10.3390/app10124248.
26. ariguchi N., Chen X., Hayashi Y., Kawano Y., Fujiwara M., Matsuba M., Shimizu H., Ohba Y., Nakamura I., Kitamoto R., et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob. Agents Chemother. 2020; 64: e02020-19. doi: 10.1128/AAC.02020-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
27. Maze MJ, Paynter J, Chiu W, Hu R, Nisbet M, Lewis C. Therapeutic drug monitoring of isoniazid and rifampicin during anti-tuberculosis treatment in Auckland, New Zealand. Int J Tuberc Lung Dis 2016; 20(7): 955–960.
28. Fernandes GFDS, Salgado HRN, Santos JLD. Isoniazid: A Review of Characteristics, Properties and Analytical Methods. Crit Rev Anal Chem. 2017 Jul 4; 47(4): 298-308. doi: 10.1080/10408347.2017.1281098. Epub 2017 Jan 12. PMID: 28080136.
29. Rifampicin: A Review. Drugs 1, 354–398 (1971). https://doi.org/10.2165/00003495-197101050-00002
30. Goldstein, B. Resistance to rifampicin: a review. J Antibiot 67, 625–630 (2014). https://doi.org/10.1038/ja.2014.107
31. Mohammed Musa Saaduddin, Sultana. G, Dhanalakshmi. Utilization of Bedaquiline among Drug Resistant-Tuberculosis patients. Asian Journal of Pharmaceutical Research. 2022; 12(2):132-6. doi: 10.52711/2231-5691.2022.00020
32. Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res. 2023 May; 13(5): 1246-1271. doi: 10.1007/s13346-022-01238-y. Epub 2022 Sep 21. PMID: 36131190; PMCID: PMC9491662.
33. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr. 2013; 2(4): 1-12. doi: 10.1128/microbiolspec.MGM2-0023-2013. PMID: 25530919; PMCID: PMC4268777.
34. Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, Tan S, Zhang T. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv Med Sci. 2016 Mar;61(1):63-71. doi: 10.1016/j.advms.2015.09.007. Epub 2015 Oct 1. PMID: 26521205.
35. Tesemma Sileshi, Eyasu Makonnen, Nigus Fikrie Telele, Victoria Barclay, Alimuddin Zumla and Eleni Aklillu. () Variability in plasma rifampicin concentrations and role of SLCO1B1, ABCB1, AADAC2 and CES2 genotypes in Ethiopian patients with tuberculosis. Infectious Diseases. 2024; 56(4): 308-319.
36. Zhang Y, Chang K, Leung C, Yew W, Gicquel G, Fallows D, Kaplan G, Chaisson R, Zhang W. “ZS-MDR-TB” versus “ZR-MDR-TB”: Improving Treatment of MDR-TB by Identifying Pyrazinamide Susceptibility. Emerging Microbes and Infections. 2012;1:e5. doi: 10.1038/emi.2012.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
37. Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis 2012; 55(2): 169–177. [DOI] [PMC free article] [PubMed] [Google Scholar]
38. Mitchison DA Pharmacokinetic/pharmacodynamic parameters and the choice of high-dosage rifamycins. Int J Tuberc Lung Dis 2012; 16(9): 1186–1189
39. Ryan Cooper, Stan Houston, Christine Hughes & James C. Johnston. () Chapitre 10: Le traitement de la tuberculose active chez les populations particulières. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine. 2023; 7(6): 436-455.
40. Saxena R, Singh D, Phuljhele S, Kalaiselvan V, Karna S, Gandhi R, Prakash A, Lodha R, Mohan A, Menon V, Garg R. Ethambutol toxicity: Expert panel consensus for the primary prevention, diagnosis and management of ethambutol-induced optic neuropathy. Indian J Ophthalmol. 2021 Dec; 69(12): 3734-3739. doi: 10.4103/ijo.IJO_3746_20. PMID: 34827033; PMCID: PMC8837289.
41. Mandal S, Saxena R, Dhiman R, Mohan A, Padhy SK, Phuljhele S, et al. Prospective study to evaluate incidence and indicators for early detection of ethambutol toxicity. Br J Ophthalmol. 2021; 105: 1024–8. doi: 10.1136/bjophthalmol-2020-316897.
42. Behbehani RS, Affel EL, Sergott RC, Savino PJ. Multifocal ERG in ethambutol associated visual loss. Br J Ophthalmol. 2005; 89: 976–82. doi: 10.1136/bjo.2004.065656.
43. Saxena R, Phuljhele S, Prakash A, Lodha R, Singh D, Karna S, et al. The INOSrG. Ethambutol optic neuropathy: Vigilance and screening, the keys to prevent blindness with the revised anti-tuberculous therapy regimen. J Assoc Physicians India. 2021; 69: 54–7.
44. Tesemma Sileshi, Gosaye Mekonen, Eyasu Makonnen and Eleni Aklillu. Effect of Genetic Variations in Drug-Metabolizing Enzymes and Drug Transporters on the Pharmacokinetics of Rifamycins: A Systematic Review. Pharmacogenomics and Personalized Medicine. 2022; 15: 561-571
45. Ryan Cooper, Stan Houston, Christine Hughes and James C. Johnston. Chapter 10: Treatment of active tuberculosis in special populations. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine. 20226: Sup1, pages 149-166.
46. McIlleron H, Rustomjee R, Vahedi M, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012; 56(6): 3232–3238
47. Goli Venkateshwarlu, E. Ragyanaik, G. Suma, Anasuri Santosh, Manaoranjan Sabat. Recent Survey of IBS, HIV, TB, Uterus Cancer in Rural and Urban Development Areas. Asian J. Pharm. Res. 2014; 4(1): 36-38.