Author(s):
Dev Prakash Dahiya, Sunny Dhiman
Email(s):
sdsdhiman1@gmail.com
DOI:
10.52711/2231-5691.2025.00026
Address:
Dev Prakash Dahiya1, Sunny Dhiman2,3*
1Professor, Department of Pharmaceutical Chemistry, School of Pharmacy, Abhilashi University, Mandi, HP.
2Research Scholar PhD Pharmaceutical Sciences, Department of Pharmacology, School of Pharmacy, Abhilashi University, Mandi, HP.
3Assistant Professor, Department of Pharmacology, Chandigarh College of Pharmacy, CGC Landran, Punjab.
*Corresponding Author
Published In:
Volume - 15,
Issue - 2,
Year - 2025
ABSTRACT:
The natural phenomenon known as "antimicrobial resistance" occurs when bacteria become resistant to medications that originally worked to treat infections caused by these microbes. Associated with high rates of morbidity and mortality, medication resistance in bacterial pathogens is a global concern. Illnesses that are difficult to treat or even incurable with conventional antimicrobials have been linked to multidrug-resistant gram +ve and gram ve bacteria. Lack of early identification of pathogenic bacteria and their patterns of antimicrobial vulnerability in patients with bacteremia and other serious disorders leads to the widespread and frequently inappropriate administration of broad-spectrum antibiotics in healthcare settings. This mini-review summarizes the mechanisms by which bacteria develop drug resistance and focuses mostly on several forms of microbial drug resistance.
Cite this article:
Dev Prakash Dahiya, Sunny Dhiman. A Mini Review on Drug Resistance among Bacterial Pathogens: Need for Novel Antibacterials. Asian Journal of Pharmaceutical Research. 2025; 15(2):159-2. doi: 10.52711/2231-5691.2025.00026
Cite(Electronic):
Dev Prakash Dahiya, Sunny Dhiman. A Mini Review on Drug Resistance among Bacterial Pathogens: Need for Novel Antibacterials. Asian Journal of Pharmaceutical Research. 2025; 15(2):159-2. doi: 10.52711/2231-5691.2025.00026 Available on: https://asianjpr.com/AbstractView.aspx?PID=2025-15-2-11
REFERENCES:
1. Kumari, A., Yadav, S.K. ve Yadav, SC. Biodegradable polymer nanoparticles with kev xa tshuaj raws. Colloids B Surfaces: Biological Interfaces. 2010; 75(1): 1-18. doi:10.1016/j.colsurfb.2009.09.001
2. Jiang G, Zhang L, Feng X. Biodegradable polymers: review of recent advances and emerging opportunities for biomedical applications. Advanced Functional Materials. 2021; 31(10): 2006824. doi:10.1002/adfm.202006824
3. Jayne, R.A. Manufacturing technology for various drug-loaded biodegradable polylactide-glycolide (PLGA) composites. Biomaterials. 2000; 21(23): 2475-2490. doi:10.1016/S0142-9612(00)00115-0
4. Lange, R. and Peppas, N. A. Advances in biomaterials, drug delivery and bionanotechnology. AIChE Journal. 2003; 49(12): 2990-3006. doi:10.1002/aic.690491202
5. Li, P. I. Biodegradable polymers or phais-polyglycolic acid/polyacetic acid homopolymers thiab copolymers: 1. Polymers. 2003; 44(3): 657-671. doi: 10.1016/S00323861(02)00843-0
6. Ahsan, S.M., Rao, C.M. ve Ahmad, M.F. Nanoparticle carriers (NPCs) for oral drug delivery to the brain: a review. Current Nanoscience. 2019; 15(3): 227-241. doi: 10.2174/1573413714666180710144726
7. Alexis, F. Factors affecting the degradation and drug release mechanisms of polylactic acid and poly[(lactic acid)-co-(glycolic acid)]. Polymers for Advanced Technology. 2005; 16(4): 276-282. doi:10.1002/pat.606
8. Danhill, F., Ansolena, E., Silva, J. M., Coco, R., Le Breton, A., Preat, V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release. 2012; 61(2): 505-522. doi:10.1016/j.jconrel.2012.01.043
9. Nair, L.S. and Laurentson, C.T. Biodegradable polymers and biomaterials. Progress in Polymer Science. 2007; 32(8-9): 762-798. doi:10.1016/j.progpolymsci.2007.05.017
10. Makadia, H. K. and Siegel, S. J. Polylactic-co-glycolic acid (PLGA) as a biodegradable controlled drug delivery vehicle. Polymers. 2011; 3(3): 1377-1397. doi: 10.3390/polym3031377.
11. Anderson, J. M. and Shive, M.S. Biodegradation thiab biocompatibility ntawm PLA thiab PLGA microspheres. Advanced Drug Delivery Reviews. 1997; 28(1): 524.
12. Lu, L., Peter, S.J., Lyman, M.D., Lai, H.L., Leite, S.M., Tamada, J. A., and Mikos, A.G. In vitro and in vivo degradation of porous poly (DL-lactic-glycolic acid) foams. Biyomateryaller, 2000; 21(18): 1837-1845.
13. Nkauj, R. ve Murphy, M. Polilaktik-glikolik asit (PLGA) nanopartikülleri rau kev xa tshuaj. Frontiers hauv Biological Sciences. 2013; 18: 532-543.
14. Pillai, O. and Panchagnula, R. Polymers in drug delivery. Current Events in Chemical Biology. 2001; 5(4): 447-451.
15. Biondi, M., Ungaro, F., Quaglia, F. and Netti, P. A. Controlled drug delivery in tissue engineering. Advanced Drug Delivery Reviews. 2008; 60(2): 229-242.
16. Vasil, J. K., Reddy, M.K. and Labhasetwar, V.D. Drug targeted nanosystems: opportunities and challenges. Tam sim and Nanobilim. 2005; 1(1): 47-64.
17. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R. Biodegradable ntev-ncua polymer nanoparticles. Science. 1994; 263(5153): 1600-1603.
18. Wang, H. and Nakayama, N. Polilaktit/modifiye halloysit nanokompozit filmler has improved thermal stability and all properties. Composite Science and Technology. 2009; 69(5): 710-715.
19. Vert, M., Mauduit, J. and Li, S. Biodegradation of PLA/GA polymers: due to complexity. Biomaterials. 1994; 15(15): 1209-1213.
20. Jain, R. A. Manufacturing technology for various drug-loaded biodegradable polylactide-glycolide (PLGA) compounds. Biomaterials. 2000; 21(23): 2475-2490.
21. Quan, me. Li, K., Li, C., Han, B., and Park, K. A review of the current status of Tumor Targeted Drug Delivery Controlled Release Journal. 2012; 164(2): 108-114.
22. Ulery, B.D., Nair, L.S. ve Laurencin, C.T. Biomedical siv ntawm biodegradable polymers. Phau ntawv Journal of Polymer Science Part B: Polymer Physics. 2011; 49(12): 832-864.
23. Sinha, V.R. and Trehan, A. Biodegradable microspheres for protein delivery. Journal of Controlled Release. 2003; 90(3): 261-280.
24. Lange, R. New drug delivery methods. Science. 1990; 249(4976): 1527-1533.
25. Houchin, M.L. and Topp, E.M. Physical properties of PLGA films during polymer degradation. Journal of Applied Polymer Science. 2008; 107(6): 3131-313
26. Fakir J, Surana KR, Patil DM, Sonawane DD. Survey Based Assessment of Adverse Effect in Covid-19 Vaccination Breakthrough Infections
27. Surana KR, Parkhe AG, Ahire ED, Pawar AR, Khairnar S, Mahajan SK, Patil DM, Sonawane DD, Kshirsagar SJ. Current therapeutic targets for neuropathic pain. Asian Journal of Pharmaceutical Research. 2022; 12(1):96-104.
28. Talele SG, Ahire ED, Surana KR, Sonawane VN, Talele GS. Corona Virus Disease (COVID-19): A past and Present Prospective. Asian Journal of Pharmaceutical Research. 2022; 12(1): 45-53.
29. Sonawane VN, Yeola CA, Sonawane VN, Surana KR, Patil DM, Sonawane DD. Estimation of Paracetamol in various brands of Paracetamol Tablets and their Comparative Study. Asian Journal of Pharmaceutical Analysis. 2023; 13(3):155-61
30. Aher P, Surana K, Ahire E, Patil D, Sonawane D, Mahajan S. Development and validation of RP-HPLC method for quantitative determination of 4-amino benzene sulphonamide in sulphonamide hydrochloride. Trends in Sciences. 2023 Mar 15; 20(6):5209-.
31. Sukhishvili SA, Granick S. Layered, erasable, ultrathin polymer films. Journal of the American Chemical Society. 2000 Oct 4; 122(39): 9550-1.
32. Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D. A supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution. Journal of the American Chemical Society. 2013 Mar 27; 135(12): 4765-70.
33. Li Y. Fullerene‐bisadduct acceptors for polymer solar cells. Chemistry–An Asian Journal. 2013 Oct; 8(10):2316-28.
34. Bronich TK, Ouyang M, Kabanov VA, Eisenberg A, Szoka FC, Kabanov AV. Synthesis of vesicles on polymer template. Journal of the American Chemical Society. 2002 Oct 9; 124(40):11872-3.
35. Abhishek K. Sah, Manmohan Singh Jangdey, Sanjay J. Daharwal. Abhishek K. Sah, Manmohan Singh Jangdey, Sanjay J. Daharwal. Tablet Coating Technology: An Overview. Asian J. Pharm. Tech. 2014; 4(2): 83-97.
36. Raj Kumari, Abhilasha Mittal, Meenakshi Sharma. Pharmaceutical Residues in the Environment: A Review. Asian Journal of Pharmaceutical Analysis. 2024; 14(3): 201-4. doi: 10.52711/2231-5675.2024.00036 Available on:
37. Kar Mahapatra, D., Aguilar, C.N., and Haghi, A.K. (Eds.). Applied Pharmaceutical Practice and Nutraceuticals: Natural Product Development (1st ed.). Apple Academic Press. 2021
38. Chia, C.H., Talele, S.G., Abraham, A.R., & Haghi, A.K. (Eds.).. Carbon Nanotubes for Biomedical Applications and Healthcare (1st ed.). Apple Academic Press. 2024 https://doi.org/10.1201/9781003396390