Author(s):
Neha Singh, Kirti Zalma, Melica Khatri, Paul Ven, Arjun Singh
Email(s):
arjunphar@gmail.com
DOI:
10.52711/2231-5691.2024.00027
Address:
Neha Singh1, Kirti Zalma1, Melica Khatri1, Paul Ven1, Arjun Singh*2
1Department of Pharmacognosy, School of Pharmaceutical Sciences, Bhagwant University, Sikar Road, Ajmer, Rajasthan 305004, India.
2Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
*Corresponding Author
Published In:
Volume - 14,
Issue - 2,
Year - 2024
ABSTRACT:
This article highlights the key points and approaches involved in the screening and validation of natural products for drug discovery. Screening assays play a vital role in evaluating the biological activities of natural product extracts or fractions, targeting specific diseases, pathways, or cellular processes of interest. In vitro studies provide further insights into the efficacy, safety, and mechanism of action of promising candidates, using isolated cells or cellular components. Cell-based assays offer a more realistic cellular environment to assess natural product effects on cell viability, proliferation, and specific functions. Animal models bridge the gap between in vitro and clinical evaluations, providing a comprehensive understanding of therapeutic effects, pharmacokinetics, and toxicity profiles. Pharmacokinetic studies examine the absorption, distribution, metabolism, and excretion of natural products, optimizing dosage regimens and predicting human efficacy. Safety evaluation encompasses toxicity studies to determine safe dosage ranges and identify potential risks. Promising candidates progress to clinical trials, where efficacy, safety, dosage, and interactions are assessed in human subjects. This comprehensive screening and validation process contributes to the development of effective and safe natural product-based drugs.
Cite this article:
Neha Singh, Kirti Zalma, Melica Khatri, Paul Ven, Arjun Singh. Screening and Validation of Natural Products for Drug Discovery: Key Points and Approaches. Asian Journal of Pharmaceutical Research. 2024; 14(2):162-8. doi: 10.52711/2231-5691.2024.00027
Cite(Electronic):
Neha Singh, Kirti Zalma, Melica Khatri, Paul Ven, Arjun Singh. Screening and Validation of Natural Products for Drug Discovery: Key Points and Approaches. Asian Journal of Pharmaceutical Research. 2024; 14(2):162-8. doi: 10.52711/2231-5691.2024.00027 Available on: https://asianjpr.com/AbstractView.aspx?PID=2024-14-2-12
REFERENCES:
1. World Health Organization. WHO traditional medicine strategy: 2014-2023. World Health Organization, 2013.
2. World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization, 2019.
3. World Health Organization. The Regional Strategy for Traditional Medicine in the Western Pacific 2011-2020. 2012.
4. World Health Organization. Regional strategy for traditional medicine in the Western Pacific. Manila: WHO Regional Office for the Western Pacific, 2002.
5. Gautam, Y., Dwivedi, S., Srivastava, A., Hamidullah, Singh, A., Chanda, D., Singh, J., Rai, S., Konwar, R., Negi, A.S., 2-(3′,4′-Dimethoxybenzylidene) tetralone induces anti-breast cancer activity through microtubule stabilization and activation of reactive oxygen species. RSC Adv. 2016; 6: 33369–33379.
6. Hamid, A.A., Hasanain, M., Singh, A., Bhukya, B., Omprakash, Vasudev, P.G., Sarkar, J., Chanda, D., Khan, F., Aiyelaagbe, O.O., Negi, A.S., Synthesis of novel anticancer agents through opening of spiroacetal ring of diosgenin. Steroids. 2014; 87: 108–118.
7. Hamid, A.A., Kaushal, T., Ashraf, R., Singh, A., Chand Gupta, A., Prakash, O., Sarkar, J., Chanda, D., Bawankule, D.U., Khan, F., Shanker, K., Aiyelaagbe, O.O., Negi, A.S., (22β,25R)-3β-Hydroxy-spirost-5-en-7-iminoxy-heptanoic acid exhibits anti-prostate cancer activity through caspase pathway. Steroids. 2017; 119: 43–52.
8. Jain, S., Singh, A., Khare, P., Chanda, D., Mishra, D., Shanker, K., Karak, T., Toxicity assessment of Bacopa monnieri L. grown in biochar amended extremely acidic coal mine spoils. Ecological Engineering. 2017; 108: 211–219.
9. Khwaja, S., Fatima, K., Hasanain, M., Behera, C., Kour, A., Singh, A., Luqman, S., Sarkar, J., Chanda, D., Shanker, K., Gupta, A.K., Mondhe, D.M., Negi, A.S., Antiproliferative efficacy of curcumin mimics through microtubule destabilization. European Journal of Medicinal Chemistry. 2018; 151: 51–61.
10. Kumar, B.S., Ravi, K., Verma, A.K., Fatima, K., Hasanain, M., Singh, A., Sarkar, J., Luqman, S., Chanda, D., Negi, A.S., Synthesis of pharmacologically important naphthoquinones and anticancer activity of 2-benzyllawsone through DNA topoisomerase-II inhibition. Bioorganic and Medicinal Chemistry. 2017; 25: 1364–1373.
11. Mishra, D., Jyotshna, Singh, A., Chanda, D., Shanker, K., Khare, P., Potential of di-aldehyde cellulose for sustained release of oxytetracycline: A pharmacokinetic study. International Journal of Biological Macromolecules. 2019; 136: 97–105.
12. Sathish Kumar, B., Kumar, A., Singh, J., Hasanain, M., Singh, A., Fatima, K., Yadav, D.K., Shukla, V., Luqman, S., Khan, F., Chanda, D., Sarkar, J., Konwar, R., Dwivedi, A., Negi, A.S., Synthesis of 2-alkoxy and 2-benzyloxy analogues of estradiol as anti-breast cancer agents through microtubule stabilization. European Journal of Medicinal Chemistry. 2014a; 86: 740–751.
13. Sathish Kumar, B., Singh, Aastha, Kumar, A., Singh, J., Hasanain, M., Singh, Arjun, Masood, N., Yadav, D.K., Konwar, R., Mitra, K., Sarkar, J., Luqman, S., Pal, A., Khan, F., Chanda, D., Negi, A.S., Synthesis of neolignans as microtubule stabilisers. Bioorganic and Medicinal Chemistry. 2014b; 22: 1342–1354.
14. Singh, A., Mohanty, I., Singh, J., Rattan, S., BDNF augments rat internal anal sphincter smooth muscle tone via RhoA/ROCK signaling and nonadrenergic noncholinergic relaxation via increased NO release. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2020; .318: G23–G33.
15. Singh, A., Rattan, S., BDNF rescues aging-associated internal anal sphincter dysfunction. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2021; 321: G87–G97.
16. Singh, A., Singh, J., Rattan, S., Evidence for the presence and release of BDNF in the neuronal and non‐neuronal structures of the internal anal sphincter. Neurogastroenterology and Motility. 2021.
17. Singh, Aastha, Fatima, K., Singh, Arjun, Behl, A., Mintoo, M.J., Hasanain, M., Ashraf, R., Luqman, S., Shanker, K., Mondhe, D.M., Sarkar, J., Chanda, D., Negi, A.S., Anticancer activity and toxicity profiles of 2-benzylidene indanone lead molecule. European Journal of Pharmaceutical Sciences. 2015; 76: 57–67.
18. Singh, Aastha, Fatima, K., Srivastava, A., Khwaja, S., Priya, D., Singh, Arjun, Mahajan, G., Alam, S., Saxena, A.K., Mondhe, D.M., Luqman, S., Chanda, D., Khan, F., Negi, A.S., Anticancer activity of gallic acid template-based benzylidene indanone derivative as microtubule destabilizer. Chem Biol Drug Des. 2016; 88: 625–634.
19. Manmohan, S., Arjun, S., Khan, S. P., Eram, S., and Sachan, N. K., Green chemistry potential for past, present and future perspectives. International Research Journal of Pharmacy. 2012; 3: 31-36.
20. Singh, A., R. Sharma, K. M. Anand, S. P. Khan, and N. K. Sachan. Food-drug interaction. International Journal of Pharmaceutical and Chemical Science. 2012; 1(1): 264-279.
21. Arjun Singh. A Review of various aspects of the Ethnopharmacological, Phytochemical, Pharmacognostical, and Clinical significance of selected Medicinal plants. Asian Journal of Pharmacy and Technology. 2022; 12(4): 349-0. doi: 10.52711/2231-5713.2022.00055
22. Devender Paswan, Urmila Pande, Alka Singh, Divya Sharma, Shivani Kumar, Arjun Singh. Epidemiology, Genomic Organization, and Life Cycle of SARS CoV-2. Asian Journal of Nursing Education and Research. 2023; 13(2):141-4.
23. Arjun Singh, Rupendra Kumar, Sachin Sharma. Natural products and Hypertension: Scope and role in Antihypertensive Therapy. Asian Journal of Nursing Education and Research. 2023; 13(2): 162-6.
24. Arjun Singh. A Review of various aspects of the Ethnopharmacological, Phytochemical, Pharmacognostical, and Clinical significance of selected Medicinal plants. Asian Journal of Pharmacy and Technology. 2022; 12(4): 349-360. doi: 10.52711/2231-5713.2022.00055
25. Arjun Singh, Rupendra Kumar. An Overview on Ethnopharmacological, Phytochemical, and Clinical Significance of Selected Dietary Polyphenols. Asian Journal of Research in Chemistry. 2023; 16(1):8-2.
26. Arjun Singh. Plant-based Isoquinoline Alkaloids: A Chemical and Pharmacological Profile of Some Important Leads. Asian Journal of Research in Chemistry. 2023; 16(1):43-8.
27. Arjun Singh. Withaniasomnifera (L.) Ashwagandha: A Review on Ethnopharmacology, Phytochemistry, Biomedicinal and Traditional uses. Asian Journal of Pharmacy and Technology. 2023; 13(3):213-7. doi: 10.52711/2231-5713.2023.00038
28. Kaman Kumar, Pooja Singh, Divya Sharma, Akanksha Singh, Himanshu Gupta, Arjun Singh. Prospective Current Novel Drug Target for the Identification of Natural Therapeutic Targets for Alzheimer's Disease. Asian Journal of Pharmacy and Technology. 2023; 13(3): 171-4. doi: 10.52711/2231-5713.2023.00030
29. Arijita Singla, Varsha Singh, Komal Kumari, Sonam Pathak, Arjun Singh. Natural Marine Anticancer compounds and their derivatives used in Clinical Trials. Asian Journal of Pharmacy and Technology. 2023; 13(3): 235-9. doi: 10.52711/2231-5713.2023.00042
30. Arjun Singh. An Overview on Phytoestrogen based antihypertensive agent for their potential Pharmacological Mechanism. Research Journal of Pharmaceutical Dosage Forms and Technology. 2023; 15(3): 211-4. doi: 10.52711/0975-4377.2023.00034
31. Singh, A., Chanda, D., and Negi, A. S. Antihypertensive activity of Diethyl-4, 4'-dihydroxy-8, 3'-neolign-7, 7'-dien-9, 9'-dionate through increase in intracellular cGMP level and blockade of calcium channels (VDCC) and opening of potassium channel and in vivo models (SHRs and L-NAME induced hypertension). In Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology) (pp. PO1-2). Japanese Pharmacological Society. 2018.
32. Tim F. Dorweiler, Arjun Singh, Richard N Kolesnick, Julia V. Busik; Inhibition of ceramide rich platforms by anti-ceramide immunotherapy prevents retinal endothelial cell damage and the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2023; 64(8): 941.
33. Shivani Sharma, Navdeep Singh, Amar Deep Ankalgi, Arti Rana, Mahendra Singh Ashawat. A Precise Review on Applications and Basic Concept of Direct Analysis in Real Time Mass Spectrometry (DART-MS). Asian Journal of Pharmaceutical Analysis. 2021; 11(3): 243-1.
34. Muhammed Shakkeel K.V, Anjan Kumar, Veeresh Babu. D, Narayana Swamy V.B. Pharmacological Evaluation of Trichiliaconnaroides Bark for Analgesic and Anti-inflammatory activity in Experimental Animal Models. Asian J. Pharm. Res. 2015; 5(3): 138-144.
35. Jaya Preethi P., Karthikeyan E., Lohita M., Goutham Teja P., Subhash M., Shaheena P., Prashanth Y., Sai Nandhu K.. Benzimidazole: An important Scaffold in Drug Discovery. Asian J. Pharm. Tech. 2015; 5(3); 138-152.
36. Parimal M Prajapati, Yatri Shah, DJ Sen, CN Patel. Combinatorial Chemistry: A New Approch for Drug Discovery. Asian J. Research Chem. 2010; 3(2): 249-254.
37. Nizamudeen.T, Ramanjaneyulu. J, Veeresh Babu. D, Narayana Swamy V.B. A Study on Antidepressant Activity of Medhagulika-a Polyherbal Formulation in Experimental Animal Models. Asian J. Pharm. Tech. 2015; 5(2): 115-121.
38. Rutuja P. Pawar, Sachin H. Rohane. Role of Autodock vina in PyRx Molecular Docking. Asian J. Research Chem. 2021; 14(2): 132-134.