Author(s):
Mukund M. Pache, Rutuja R. Pangavhane
Email(s):
mukundpache918@mail.com
DOI:
10.52711/2231-5691.2025.00030
Address:
Mukund M. Pache*, Rutuja R. Pangavhane
Department of Pharmacy, K.V.N. Naik S. P. Sanstha's, Institute of Pharmaceutical Education and Research, Nashik, 422002, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 2,
Year - 2025
ABSTRACT:
Immunotherapy represents a novel approach for managing autoimmune diseases by targeting specific immune cells, cytokines, and checkpoints rather than broadly suppressing the immune system. Corticosteroids and disease-modifying antirheumatic drugs (DMARDs) remain commonly used treatments despite challenges such as lack of specificity and significant adverse effects. Immunotherapies, including monoclonal antibodies (mAbs), CAR-T cells, and immune checkpoint inhibitors (ICIs), address the underlying causes of immune system dysfunction, offering enhanced effectiveness for conditions such as rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and psoriasis. Emerging therapies include next-generation CAR-T and CAR-NK cells, gene editing technologies such as CRISPR, and personalized medicine approaches. These innovations allow for precise targeting of autoreactive cells and customization of treatments to individual immune profiles. Although the advances are promising, safety issues, high costs, and the variability in patient response are still the major hurdles. Key challenges include immune-related adverse events and infections, while economic barriers significantly limit accessibility. Additionally, variability in therapeutic outcomes highlights the need for biomarkers to predict responses and guide patient selection. AI-based tools could aid patient stratification and drug discovery, enhancing safety and efficacy in the future. Overall, sustained exploration in immunotherapy optimization and the introduction of new concepts are of utmost importance for the purpose of autoimmune disease management. Furthermore, these advancements hold the potential to extend remission duration and improve patient quality of life.
Cite this article:
Mukund M. Pache, Rutuja R. Pangavhane. Immunotherapy in Autoimmune Diseases: Current Advances and Future Directions. Asian Journal of Pharmaceutical Research. 2025; 15(2):183-1. doi: 10.52711/2231-5691.2025.00030
Cite(Electronic):
Mukund M. Pache, Rutuja R. Pangavhane. Immunotherapy in Autoimmune Diseases: Current Advances and Future Directions. Asian Journal of Pharmaceutical Research. 2025; 15(2):183-1. doi: 10.52711/2231-5691.2025.00030 Available on: https://asianjpr.com/AbstractView.aspx?PID=2025-15-2-15
REFERENCE:
1. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunology Today. 1993;14(9):426–430; doi: 10.1016/0167-5699(93)90244-F.
2. Marrack P, Kappler J, Kotzin BL. Autoimmune disease: why and where it occurs. Nat Med. 2001;7(8):899–905; doi: 10.1038/90935.
3. Davidson A, Diamond B. Autoimmune Diseases. Mackay IR, Rosen FS. eds. N Engl J Med. 2001;345(5):340–350; doi: 10.1056/NEJM200108023450506.
4. Huseby ES, Liggitt D, Brabb T, et al. A Pathogenic Role for Myelin-Specific Cd8+ T Cells in a Model for Multiple Sclerosis. The Journal of Experimental Medicine. 2001;194(5):669–676; doi: 10.1084/jem.194.5.669.
5. Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol. 2015;11(6):329–341; doi: 10.1038/nrneph.2015.33.
6. Alunno A, Carubbi F, Giacomelli R, et al. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatol. 2017;1(1):3; doi: 10.1186/s41927-017-0001-8.
7. Weaver CT, Hatton RD, Mangan PR, et al. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. Annu Rev Immunol. 2007; 25(1): 821–852; doi: 10.1146/annurev.immunol.25.022106.141557.
8. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology. 2014; 6(10): a016295–a016295; doi: 10.1101/cshperspect.a016295.
9. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. The Lancet. 2016; 388(10055):2023–2038; doi: 10.1016/S0140-6736(16)30173-8.
10. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010; 464(7293): 1293–1300; doi: 10.1038/nature08933.
11. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010; 464(7293): 1293–1300.
12. Smolen JS, Landewé R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017; 76(6): 960–977; doi: 10.1136/annrheumdis-2016-210715.
13. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. The Lancet. 2017; 389(10086): 2338–2348; doi: 10.1016/S0140-6736(17)31491-5.
14. June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;.359(6382): 1361–1365; doi: 10.1126/science.aar6711.
15. Kumar A, Singh K, Kumar K, et al. Immunotherapy in Cancer Treatment: Harnessing the Power of the Immune System. RJPDFT 2024;107–112; doi: 10.52711/0975-4377.2024.00017.
16. Mathayan M, Suresh A, Balamurugan R, et al. Immune Stimulation effects of Pongamia pinnata extracts, an In vitro Analysis. Rese Jour of Pharm and Technol. 2020; 13(1): 308; doi: 10.5958/0974-360X.2020.00062.1.
17. Elliott MJ, Maini RN, Feldmann M, et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. The Lancet. 1994; 344(8930): 1105–1110; doi: 10.1016/S0140-6736(94)90628-9.
18. Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2001; 121(5): 1088–1094.
19. Gabay C, Emery P, Van Vollenhoven R, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. The Lancet. 2013; 381(9877): 1541–1550; doi: 10.1016/S0140-6736(13)60250-0.
20. Hauser SL, Waubant E, Arnold DL, et al. B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. N Engl J Med. 2008; 358(7): 676–688; doi: 10.1056/NEJMoa0706383.
21. Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately‐to‐severely active systemic lupus erythematosus: The randomized, double‐blind, phase ii/iii systemic lupus erythematosus evaluation of rituximab trial. Arthritis & Rheumatism. 2010; 62(1): 222–233; doi: 10.1002/art.27233.
22. Wahono CS, Poeranto S. Gingivitis on Systemic Lupus Erythematosus (SLE) patients: a pilot study. Age (yea rs). 2020;29:9–62.
23. Fife BT, Bluestone JA. Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways. Immunological Reviews. 2008; 224(1): 166–182; doi: 10.1111/j.1600-065X.2008.00662.x.
24. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018; 359(6382): 1350–1355; doi: 10.1126/science.aar4060.
25. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018; 18(3):.153–167; doi: 10.1038/nri.2017.108.
26. Mandlik YR. Immunotherapy, a type of cancer treatment. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020; 12(4): 282–284; doi: 10.5958/0975-4377.2020.00046.4.
27. Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016; 353(6295): 179–184; doi: 10.1126/science.aaf6756.
28. Abdalhadi HM, Chatham WW, Alduraibi FK. CAR-T-Cell Therapy for Systemic Lupus Erythematosus: A Comprehensive Overview. IJMS. 2024; 25(19): 10511; doi: 10.3390/ijms251910511.
29. Hartmann J, Schüßler‐Lenz M, Bondanza A, et al. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017; 9(9): 1183–1197; doi: 10.15252/emmm.201607485.
30. Bajirao Suryawanshi S, D Khaire R. Review on Car-T Cell Therapy for Cancer Treatment. IJT. 2023; 68–72; doi: 10.52711/2231-3915.2023.00008.
31. Sen A, Kumar K, Khan S, et al. Current Therapy in Cancer: Advances, Challenges, and Future Directions. AJNER. 2024; 77–84; doi: 10.52711/2349-2996.2024.00016.
32. Kremer JM, Westhovens R, Leon M, et al. Treatment of Rheumatoid Arthritis by Selective Inhibition of T-Cell Activation with Fusion Protein CTLA4Ig. N Engl J Med. 2003; 349(20): 1907–1915; doi: 10.1056/NEJMoa035075.
33. Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. The Lancet. 2011; 377(9767): 721–731; doi: 10.1016/S0140-6736(10)61354-2.
34. Amin AM, Muhammad Ansori AN, Kharisma VD, et al. T-Cell Epitope Vaccine Prediction Analysis Targeting Phosphoprotein (P) Rabies Virus Based on the Presence of HLA-I Alleles A, B, and C Loci Throughout Southeast Asia: An Immunoinformatics Study. RJPT. 2024; 2001–2008; doi: 10.52711/0974-360X.2024.00317.
35. Burman J, Tolf A, Hägglund H, et al. Autologous haematopoietic stem cell transplantation for neurological diseases. Journal of Neurology. Neurosurgery and Psychiatry 2018;89(2):147–155.
36. Zhong M-C, de Rosbo NK, Ben-Nun A. Multiantigen/multiepitope–directed immune-specific suppression of “complex autoimmune encephalomyelitis” by a novel protein product of a synthetic gene. The Journal of Clinical Investigation. 2002; 110(1): 81–90.
37. Zubizarreta I, Flórez-Grau G, Vila G, et al. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc Natl Acad Sci USA. 2019; 116(17): 8463–8470; doi: 10.1073/pnas.1820039116.
38. Krienke C, Kolb L, Diken E, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021; 371(6525): 145–153; doi: 10.1126/science.aay3638.
39. Adnan A, Perwitasari DA, Maliza R. Trend In the Publication of Study on Systemic Lupus Erythematosus (SLE) In 2012-2020 Period: A Bibliometric Analysis. RJPT. 2024; 1076–1082; doi: 10.52711/0974-360X.2024.00168.
40. Cambridge G, Leandro MJ, Teodorescu M, et al. B cell depletion therapy in systemic lupus erythematosus: Effect on autoantibody and antimicrobial antibody profiles. Arthritis and Rheumatism. 2006; 54(11): 3612–3622; doi: 10.1002/art.22211.
41. Baeten D, Sieper J, Braun J, et al. Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N Engl J Med. 2015; 373(26): 2534–2548; doi: 10.1056/NEJMoa1505066.
42. Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in Plaque Psoriasis — Results of Two Phase 3 Trials. N Engl J Med. 2014; 371(4): 326–338; doi: 10.1056/NEJMoa1314258.
43. Kittai AS, Oldham H, Cetnar J, et al. Immune checkpoint inhibitors in organ transplant patients. Journal of Immunotherapy. 2017; 40(7): 277–281.
44. Baksh K, Weber J. Immune Checkpoint Protein Inhibition for Cancer: Preclinical Justification for CTLA-4 and PD-1 Blockade and New Combinations. In: Seminars in Oncology Elsevier; 2015; pp. 363–377.
45. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood, The Journal of the American Society of Hematology. 2018; 131(1): 58–67.
46. Chen Y, Sun J, Liu H, et al. Immunotherapy Deriving from CAR-T Cell Treatment in Autoimmune Diseases. Journal of Immunology Research. 2019; 2019: 1–9; doi: 10.1155/2019/5727516.
47. Kebriaei P, Kelly SS, Manuri P, et al. CARs: driving T-cell specificity to enhance anti-tumor immunity. Frontiers in bioscience (Scholar edition). 2012; 4: 520.
48. Zhang Q, Lu W, Liang C-L, et al. Chimeric antigen receptor (CAR) Treg: a promising approach to inducing immunological tolerance. Frontiers in Immunology. 2018; 9: 2359.
49. Edwards JCW, Szczepański L, Szechiński J, et al. Efficacy of B-Cell–Targeted Therapy with Rituximab in Patients with Rheumatoid Arthritis. N Engl J Med. 2004; 350(25): 2572–2581; doi: 10.1056/NEJMoa032534.
50. Emery P, Fleischmann R, Filipowicz‐Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: Results of a phase IIB randomized, double‐blind, placebo‐controlled, dose‐ranging trial. Arthritis & Rheumatism. 2006; 54(5): 1390–1400; doi: 10.1002/art.21778.
51. Cohen SB, Emery P, Greenwald MW, et al. Rituximab for rheumatoid arthritis refractory to anti–tumor necrosis factor therapy: Results of a multicenter, randomized, double‐blind, placebo‐controlled, phase III trial evaluating primary efficacy and safety at twenty‐four weeks. Arthritis and Rheumatism. 2006; 54(9): 2793–2806; doi: 10.1002/art.22025.
52. Srivastava S, Patel S, Daharwal SJ, et al. Rheumatoid Arthritis: An Autoimmune Disease Prevalent in Females. Rese Jour of Pharm and Technol. 2016; 9(2): 170; doi: 10.5958/0974-360X.2016.00030.5.
53. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017; 376(3): 221–234; doi: 10.1056/NEJMoa1601277.
54. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017; 376(3): 209–220; doi: 10.1056/NEJMoa1606468.
55. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 2014; 83(3): 278–286; doi: 10.1212/WNL.0000000000000560.
56. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. The Lancet. 2012; 380(9856): 1829–1839; doi: 10.1016/S0140-6736(12)61768-1.
57. Jones JL, Anderson JM, Phuah C-L, et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain. 2010; 133(8): 2232–2247.
58. Furie R, Rovin BH, Houssiau F, et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N Engl J Med. 2020; 383(12): 1117–1128; doi: 10.1056/NEJMoa2001180.
59. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010; 10(5): 301–316; doi: 10.1038/nri2761.
60. Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in Plaque Psoriasis — Results of Two Phase 3 Trials. N Engl J Med. 2014; 371(4): 326–338; doi: 10.1056/NEJMoa1314258.
61. Bai F, Li GG, Liu Q, et al. Short-Term Efficacy and Safety of IL-17, IL-12/23, and IL-23 Inhibitors Brodalumab, Secukinumab, Ixekizumab, Ustekinumab, Guselkumab, Tildrakizumab, and Risankizumab for the Treatment of Moderate to Severe Plaque Psoriasis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Journal of Immunology Research. 2019; 2019: 1–25; doi: 10.1155/2019/2546161.
62. Reich K, Armstrong AW, Langley RG, et al. Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE): results from a phase 3, randomised controlled trial. The Lancet. 2019; 394(10201): 831–839.
63. Malagoli P, Dapavo P, Amerio P, et al. Secukinumab in the Treatment of Psoriasis: A Narrative Review on Early Treatment and Real-World Evidence. Dermatol Ther (Heidelb). 2024; 14(10): 2739–2757; doi: 10.1007/s13555-024-01255-4.
64. Gaikwad RG, Shinde AJ, Hajare AA. Herbal Treatment for Management of Psoriasis: An Overview. RJPT. 2022; 1385–1392; doi: 10.52711/0974-360X.2022.00231.
65. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. Longo DL. ed. N Engl J Med. 2018;378(2):158–168; doi: 10.1056/NEJMra1703481.
66. Kazi DS, Moran AE, Coxson PG, et al. Cost-effectiveness of PCSK9 Inhibitor Therapy in Patients with Heterozygous Familial Hypercholesterolemia or Atherosclerotic Cardiovascular Disease. JAMA. 2016; 316(7):743; doi: 10.1001/jama.2016.11004.
67. Feist E, Fatenejad S, Grishin S, et al. Olokizumab, a monoclonal antibody against interleukin-6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by tumour necrosis factor inhibitor therapy: efficacy and safety results of a randomised controlled phase III study. Annals of the Rheumatic Diseases. 2022; 81(12):1661–1668.
68. Pisetsky DS, Rovin BH, Lipsky PE. New Perspectives in Rheumatology: Biomarkers as Entry Criteria for Clinical Trials of New Therapies for Systemic Lupus Erythematosus: The Example of Antinuclear Antibodies and Anti‐DNA. Arthritis and Rheumatology. 2017; 69(3): 487–493; doi: 10.1002/art.40008.
69. Panwar B, Schmiedel BJ, Liang S, et al. Multi–cell type gene coexpression network analysis reveals coordinated interferon response and cross–cell type correlations in systemic lupus erythematosus. Genome Research. 2021; 31(4):659–676.
70. Herbst R, Liu Z, Jallal B, et al. Biomarkers for systemic lupus erythematosus. Int J of Rheum Dis. 2012; 15(5): 433–444; doi: 10.1111/j.1756-185X.2012.01764.x.
71. Tanaka Y, Kubo S, Miyagawa I, et al. Lymphocyte Phenotype and Its Application to Precision Medicine in Systemic Autoimmune Diseases✰. In: Seminars in Arthritis and Rheumatism Elsevier. 2019; pp. 1146–1150.
72. Rezvani K, Rouce R, Liu E, et al. Engineering natural killer cells for cancer immunotherapy. Molecular Therapy. 2017; 25(8):1769–1781.
73. Jeyakumar N, Smith M. Custom CARs: leveraging the adaptability of allogeneic CAR therapies to address current challenges in relapsed/refractory DLBCL. Frontiers in Immunology. 2022; 13: 887866.
74. Robinson WH, Lindstrom TM, Cheung RK, et al. Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nature Reviews Rheumatology. 2013; 9(5):267–276.
75. Skougaard M, Drachmann C, Stisen ZR, et al. OP0103 Gene expression profiles retrieved from single cell rna sequencing reveal phenotypic traits in patients with psoriatic arthritis initiating tumour necrosis factor alpha inhibitor and interleukin-17 Inhibitor. 2022.
76. Fischer JAA, Hueber AJ, Wilson S, et al. Combined Inhibition of Tumor Necrosis Factor α and Interleukin‐17 As a Therapeutic Opportunity in Rheumatoid Arthritis: Development and Characterization of a Novel Bispecific Antibody. Arthritis & Rheumatology. 2015; 67(1): 51–62; doi: 10.1002/art.38896.
77. Biesemann N, Margerie D, Asbrand C, et al. Additive efficacy of a bispecific anti–TNF/IL-6 nanobody compound in translational models of rheumatoid arthritis. Sci Transl Med. 2023; 15(681): eabq4419; doi: 10.1126/scitranslmed.abq4419.
78. Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020; 367(6481): eaba7365; doi: 10.1126/science.aba7365.
79. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016; 16(9): 566–581; doi: 10.1038/nrc.2016.97.
80. Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics. 2018; 19(6): 1236–1246.
81. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25(1):44–56; doi: 10.1038/s41591-018-0300-7.
82. Bhatia T, Sharma S. Drug Repurposing: Insights into Current Advances and Future Applications. Current Medicinal Chemistry. 2024.