Author(s): Harsh Vardhan, Ashish Jain, Akhlesh Kumar Singhai

Email(s): hvardhan1020@gmail.com

DOI: 10.52711/2231-5691.2024.00038   

Address: Harsh Vardhan, Ashish Jain, Akhlesh Kumar Singhai
Department of Pharmaceutics, School of Pharmacy, LNCT University, Kolar Road, Bhopal 462042, Madhya Pradesh, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 3,     Year - 2024


ABSTRACT:
Dendrimers have become a choice, for delivering drugs at the nano level thanks to their structure that allows precise control over size, shape, and surface features. This summary gives an update on progress in using dendrimers for drug delivery. To start with it talks about the ways dendrimers are customized for drug delivery needs like modifying their surfaces to make them more compatible with the body and targeting specific delivery sites. By adding elements that respond to conditions like pH or temperature they can release drugs in a controlled manner when needed. The summary also looks at developments using dendrimer-based formulations for types of therapeutic substances such as small molecules, peptides, proteins, and genetic material. These formulations have shown performance in how drugs move through the body, effectiveness in treating illnesses, and fewer side effects compared to methods of drug delivery. It also covers studies done before applying these systems in real-life blood-brain situations and how they could help get past barriers within the body like the blood-brain barrier or deliver drugs directly to tissues or cells - improving treatments while reducing overall harm. Lastly, it touches on obstacles and future paths, for research involving dendrimers like making them more scalable and consistent well as meeting regulatory standards. It is essential to overcome these obstacles to successfully transition dendrimer-based drug delivery systems, from research labs to use thereby harnessing their capabilities to transform drug delivery and personalized medicine.


Cite this article:
Harsh Vardhan, Ashish Jain, Akhlesh Kumar Singhai. Potential of Dendrimers in Drug Delivery: An Updated Review. Asian Journal of Pharmaceutical Research. 2024; 14(3):242-4. doi: 10.52711/2231-5691.2024.00038

Cite(Electronic):
Harsh Vardhan, Ashish Jain, Akhlesh Kumar Singhai. Potential of Dendrimers in Drug Delivery: An Updated Review. Asian Journal of Pharmaceutical Research. 2024; 14(3):242-4. doi: 10.52711/2231-5691.2024.00038   Available on: https://asianjpr.com/AbstractView.aspx?PID=2024-14-3-7


REFERENCE:
1.    Kesharwani P. Jain K. Jain NK. Dendrimer as a nanocarrier for drug delivery. Progress in Polymer Science. 2014; 39 (2):268–307. doi.org/10.1016/j.progpolymsci.2013.07.005.
2.    Ravind M, Sivaram Kumar P, Arifa Begum SK. An Overview of Dendrimers as Novel Carriers in Drug Delivery. Research Journal of Pharmacy and Technology. 2023; 16(4):2051-6. DOI: 10.52711/0974-360X.2023.00337
3.    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal. 1985;17 (1):117–132. DOI: 10.1295/polymj.17.117.
4.    Zhu J. Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. Journal of Materials Chemistry B. 2013; 1 (34):4199. doi.org/10.1039/C3TB20724B.
5.    Sheetal B. Gondkar, Shalaka P. Rasal, Ravindra B. Saudagar. Dendrimer: A Review. Asian J. Pharm. Res. 2016; 6(3): 188-192. 10.5958/2231-5691.2016.00027.7.
6.    Abbasi E. Aval SF. Akbarzadeh A. Milani M. Nasrabadi HT.  Joo SW. Hanifehpour Y. Nejati-Koshki K. Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014; 9 (1):247. doi: 10.1186/1556-276X-9-247.
7.    Tomalia DA.  Nixon LS.  Hedstrand DM.  The role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties. Biomolecules. 2020; 10 (4): 642. doi.org/10.3390/biom10040642.
8.    Santos A. Veiga F. Figueiras A. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. Materials (Basel). 2019; 13 (1): 65. doi: 10.3390/ma13010065.
9.    Malik N. Wiwattanapatapee R. Klopsch R. Lorenz K. Frey H. Weener JW. Meijer EW. Paulus W. Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000; 65 (1-2):133-48. doi: 10.1016/s0168-3659(99)00246-1.
10.    Roberts JC. Bhalgat MK. Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res. 1996; 30(1):53-65. doi.org/10.1002/(SICI)1097-4636(199601)30:1<53:AID-JBM8>3.0.CO;2-Q.
11.    Pedziwiatr-Werbicka, E., Milowska, K., Dzmitruk, V., Ionov, M., Shcharbin, D., and Bryszewska, M. Dendrimers and hyperbranched structures for biomedical applications. Eur. Polym. J. 2019; 119: 61–73. doi.org/10.1016/j.eurpolymj.2019.07.013.
12.    Kevin C Garala, Anil J Shinde, Harinath N More. Solubility Enhancement of Aceclofenac Using Dendrimer. Research J. Pharma. Dosage Forms and Tech. 2009; 1(2): 94-96.
13.    Tripathy S. Das MK. Dendrimers and their Applications as Novel Drug Delivery Carriers. Journal of Applied Pharmaceutical Science. 2013; 3 (09): 142-149. doi: 10.7324/japs.2013.3924.
14.    Ryan GM. Kaminskas LM.  Bulitta JB. McIntosh MP. Owen DJ.  Porter CJH. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release. 2013; 172(1):128-136. doi: 10.1016/j.jconrel.2013.08.004.
15.    Rabiee N.  Ahmadvand S.  Ahmadi S. Fatahi Y.  Dinarvand R.  Bagherzadeh M.  Mohammad R.  Mohammadreza T.  Tayebi L.  Hamblin MR. Carbosilane dendrimers: Drug and gene delivery applications, Journal of Drug Delivery Science and Technology. 2020; 59:101879.  doi.org/10.1016/j.jddst.2020.101879
16.    Ritzén A. & Frejd T. Synthesis of a chiral dendrimer based on polyfunctional amino acids. Chemical Communications. 1999; (2), 207–208. doi:10.1039/a809195a.
17.    Abbasi E. Aval SF. Akbarzadeh A.  Milani M.  Nasrabadi HT. Joo SW. Hanifehpour Y. Nejati KK.  Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014; 9 (1):247. doi: 10.1186/1556-276X-9-247.
18.    P. Dinesh Kumar, P. Vijayaraj Kumar.Dendrimers: Therapeutic Activity and Application. Res. J. Pharm. Dosage Form. and Tech. 6(2): April- June 2014; Page 12-133.
19.    Tomalia D. Baker H. Dewald J. Hall M.  Kallos G.  Martin S.  Roeck J.  Ryder J.  Smith P.  A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J. 1985; 17:117–132. https://doi.org/10.1295/polymj.17.117.
20.    Klajnert B. & Bryszewska M. Dendrimers: properties and applications. Acta Biochimica Polonica. 2001; 48 (1):199-208. doi: 10.18388/abp.2001_5127
21.    Mohit Batra, Rahul Nainwani, Nitin Mishra, Pradeep Guleria, Amit Jain. Dendrimers as Therapeutic Nano-Devices: A Review. Research  J. Pharm. and Tech. 4(10): Oct. 2011; Page 1533-1541.
22.    Biricova V. Laznickova A. Dendrimers: Analytical characterization and applications. Bioorg Chem. 2009; 37 (6):185-92. doi: 10.1016/j.bioorg.2009.07.006
23.    Caminade AM.  Laurent R.  Majoral JP. Characterization of dendrimers. Adv Drug Delivery Rev.  2005; 57 (15):2130-46. doi: 10.1016/j.addr.2005.09.011
24.    Agrawal P. Gupta U.  Jain NK. Glycoconjugate peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials. 2007; 28 (22):3349-59. doi: 10.1016/j.biomaterials.2007.04.004.
25.    Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discovery Today. 2010; 15 (15-6):171- 85. doi: 10.1016/j.drudis.2010.01.009.
26.    Kesharwani P. Tekade RK. Gajbhiye V.  Jain K. Jain NK. Cancer targeting potential of some ligand-anchored poly (propylene imine) dendrimers: A comparison. Nanomedicine.  2011; 7 (3):295-304. doi: 10.1016/j.nano.2010.10.010.
27.    Shi X. Banyai IN. Lesniak WG. Islam MT. Ogh IN. Balogh P. Baker JR. Balogh Jr LP. Capillary electrophoresis of polycationic poly (amidoamine) dendrimers. Electrophoresis.  2005; 26 (15):2949-59. doi: 10.1002/elps.200500134.
28.    Shi X. Lee I. Chen X. Shen M. Xiao S. Zhu M. Baker JR. Wang SH. Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter. 2010; 6 (11):2539-2545. doi: 10.1039/b925274f
29.    Guo R, & Shi, X. Dendrimers in Cancer Therapeutics and Diagnosis. Current Drug Metabolism, 2012; 13(8):1097–1109. doi: 10.2174/138920012802850010
30.    Kim CK. Ghosh P. Pagliuca C. Zhu ZJ. Menichetti S. Rotello VM. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc. 2009; 131 (4):1360-1. doi: 10.1021/ja808137c.
31.    Svenson S. Tomalia DA. Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev. 2005 Dec 14; 57(15): 2106-29. doi: 10.1016/j.addr.2005.09.018.
32.    D'Emanuele A. and Attwood D.  Advance Drug Delivery Reviews. 2005; 57 (15): 2147–2162. doi: 10.1016/j.addr.2005.09.012.
33.    Zhu Y. Liu C. Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules. 2019; 9(12):790.  doi: 10.3390/biom9120790.
34.    Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003; 90 (3): 335–343. doi: 10.1016/s0168-3659(03)00200-1.
35.    Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W, Longping W. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007; 96 (3): 595–602. doi: 10.1002/jps.20745.
36.    Venuganti VVK, Perumal OP. Poly (amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J Pharm Sci. 2009; 98(7): 2345–2356. doi: 10.1002/jps.21603.
37.    Chauhan AS, Sridevi S, Chalasani K.B, Jain AK Jain SK, Jain NK and Diwan, PV. Dendrimer-Mediated Transdermal Delivery: Enhanced Bioavailability of Indomethacin.  Journal of Controlled Release.  2003; 90 (3): 335-343.  doi: 10.1016/s0168-3659(03)00200-1.
38.    Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials. 2006; 27(4): 660-9. doi: 10.1016/j.biomaterials.2005.06.007.
39.    Prajapati, S.K.; Maurya, S.D.; Das, M.K.; Tilak, V.K.; Verma, K.K.; Dhakar, R.C. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. J. Drug Deliv. Ther. 2016; 6(2): 71–88. doi: 10.22270/jddt. v6i2.1195
40.    Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci. 2008; 97(1):123-43. doi: 10.1002/jps.21079.
41.    Kaur H, Singh G, In-vivo methods to study uptake of nanoparticles into the brain, Journal of Drug Delivery and Therapeutics. 2013; 3(4): 173-177 33.  doi.org/10.22270/jddt. v3i4.550
42.    Katare, Y.K.; Daya, R.P.; Sookram Gray, C.; Luckham, R.E.; Bhandari, J.; Chauhan, A.S.; Mishra, R.K. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer.  Mol. Pharm.  2015; 12(9): 3380–3388. doi: 10.1021/acs.molpharmaceut.5b00402.
43.    Asthana A. Chauhan AS. Diwan PV. and Jain NK. Poly (amidoamine) (PAMAM) Dendritic Nanostructures for Controlled Site-Specific Delivery of Acidic Anti-inflammatory Active ingredient. AAPS Pharm Sci Tech. 2005; 6(3): E535-E542. doi: 10.1208/pt060367.
44.    Izhar Ahmed Syed, Yamsani Madhusudan Rao. Dendrimers Based Drug Delivery Systems. Research J. Pharm. and Tech. 5(3): Mar. 2012; Page 307-316.
45.    Lee SC. Parthasarathy R.  Botwin K. Kunneman D. Rowold E. Lange G.  Klover J. Abegg A.  Zobel J. Beck T. Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed. Microdevices. 2004; 6(3): 191–202. doi: 10.1023/B: BMMD.0000042048.18186. ff.
46.    Esfand, R., and Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today. 2001; 6(8):427–436. doi:10.1016/S1359-6446(01)01757-3
47.    Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006; 11(17-18):812-8. doi: 10.1016/j.drudis.2006.07.005.
48.    Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002; 6(4):466-71. doi: 10.1016/s1367-5931(02)00347-2.
49.    Agrawal A, Asthana A, Gupta U, Jain NK. Tumor and dendrimers: a review on drug delivery aspects. J Pharm Pharmacol. 2008; 60(6): 671-88. doi: 10.1211/jpp.60.6.0001.
50.    Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mulé J, Baker JR Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 2002; 19(9):1310-6. doi: 10.1023/a: 1020398624602.Top
51.    Jobin Jose, R Narayana Charyulu, Prashant Nayak. In Vitro Cytotoxicity Studies of Pamam Dendrimer with an Antifungal Agent. Research J. Pharm. and Tech. 9(1): Jan., 2016; Page 17-19. doi: 10.5958/0974-360X.2016.00004.4
52.    Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Konishi J, Togashi K, Brechbiel MW. Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J Magn Reson Imaging. 2001; 14(6): 705-13. doi: 10.1002/jmri.10025.
53.    DEP® docetaxel - Starpharma
54.    Agarwal A, Gupta U, Asthana A, Jain NK. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials. 2009; 30(21): 3588-96. doi: 10.1016/j.biomaterials.2009.03.016.
55.    Sunoqrot S, Bae JW, Pearson RM, Shyu K, Liu Y, Kim DH, Hong S. Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules. 2012; 13(4): 1223-30. doi: 10.1021/bm300316n.
56.    Bae JW, Sunoqrot S, Jin SE, M Pearson R, Liu Y, Hong S. Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjug Chem. 2011; 22(3): 466-74. doi: 10.1021/bc100484t.
57.    Bugno J, Lantvit D, Burdette JE, Sunoqrot S, Hong S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Control Release. 2014; 191:115-22. doi: 10.1016/j.jconrel.2014.05.006
58.    Kim DH, Sunoqrot S, Liu Y, Hong S. In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics. Mol Pharm. 2013; 10(6):2157-66. doi: 10.1021/mp300560n.
59.    Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater. 2014; 26(45):7615-21. doi: 10.1002/adma.201401554.
60.    Khan HA, Jue W, Mushtaq M, Mushtaq MU. Brain tumor classification in MRI image using convolutional neural network. Math Biosci Eng. 2020; 17(5): 6203-6216. doi: 10.3934/mbe.2020328.
61.    Rodríguez GA, Rivera M, García-López P, Medina LA, Basiuk VA. Gadolinium-containing carbon nanomaterials for magnetic resonance imaging: Trends and challenges. J Cell Mol Med. 2020; 24(7): 3779-3794. doi: 10.1111/jcmm.15065.
62.    Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm. 2021 May 1; 600:120485. doi: 10.1016/j.ijpharm.2021.120485.
63.    Fruchon S, Bellard E, Beton N, Goursat C, Oukhrib A, Caminade AM, Blanzat M, Turrin CO, Golzio M, Poupot R. Biodistribution and Biosafety of a Poly (Phosphorhydrazone) Dendrimer, an Anti-Inflammatory Drug-Candidate. Biomolecules. 2019; 9(9):475. doi: 10.3390/biom9090475.
64.    Yiyun C, Tongwen X. Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. Eur J Med Chem. 2005; 40(11):1188-92. doi: 10.1016/j.ejmech.2005.06.010.
65.    Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules. 2018; 23(9):2205. doi: 10.3390/molecules23092205.
66.    Vacas-Córdoba E, Maly M, De la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomedicine. 2016; 11:1281-94. doi: 10.2147/IJN.S96352.
67.    Relaño RI, Juárez SR, Pavicic C, Muñoz E, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimers as a new adjuvant in combination with latency reversal agents for HIV treatment. J Nanobiotechnology. 2019; 17(1):69. doi: 10.1186/s12951-019-0500-4.
68.    A. Madhusudhan Reddy, P. Srinivasa Babu. Dendrimers in Antimicrobial Therapy-An Overview. Research J. Pharm. and Tech. 2016; 9(3): 322-332. doi: 10.5958/0974-360X.2016.00058.5
69.    Liu CY, Lee WS, Fung CP, Cheng NC, Liu CL, Yang SP, Chen SL. Comparative Study of Teicoplanin vs Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteraemia. Clin Drug Investig. 1996; 12(2): 80-7. doi: 10.2165/00044011-199612020-00003.
70.    Authimoolam SP, Dziubla TD. Biopolymeric Mucin and Synthetic Polymer Analogs: Their Structure, Function and Role in Biomedical Applications. Polymers (Basel). 2016; 8(3): 71. doi: 10.3390/polym8030071.
71.    Longmire M, Choyke PL, Kobayashi H. Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem. 2008; 8(14): 1180-6. doi: 10.2174/156802608785849021.
72.    Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med. 1994; 31(1): 1-8. doi: 10.1002/mrm.1910310102.
73.    Balzani, V., Ceroni, P., Gestermann, S., Kauffmann, C., Gorka, M., & Vögtle, F. Dendrimers as fluorescent sensors with signal amplification. Chemical Communications. 2000; 10: 853–854. doi:10.1039/b002116o.
74.    Caminade AM, Padié C, Laurent R, Maraval A, Majoral JP. Uses of Dendrimers for DNA Microarrays. Sensors (Basel). 2006; 6(8): 901–14. doi:10.3390/s6080901.
75.    Yoon HC, Hong MY, Kim HS. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode. Anal Biochem. 2000; 282(1): 121-8. doi: 10.1006/abio.2000.4608.
76.    Kofoed J, Reymond JL. Dendrimers as artificial enzymes. Curr Opin Chem Biol.  2005; 9(6):656-64. doi: 10.1016/j.cbpa.2005.10.013.
77.    Xian S, Xiang Y, Liu D, Fan B, Mitrová K, Ollier RC, Su B, Alloosh MA, Jiráček J, Sturek M, Alloosh M, Webber MJ. Insulin-Dendrimer Nanocomplex for Multi-Day Glucose-Responsive Therapy in Mice and Swine. Adv Mater. 2024 Feb; 36(5): e2308965. doi: 10.1002/adma.202308965.
78.    Zeynalzadeh S.  Dehghani E. Hassani A. Khoshfetrat A.   Salami-Kalajahi M. Effect of curcumin-loaded poly(amidoamine) dendrimer on cancer cell lines: a comparison between physical loading and chemical conjugation of drug. Polymer Bulletin. 2023; 81(2): 1-14. doi.org/10.1007/s00289-023-04783-9.
79.    Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nat Commun. 2023; 14(1): 944. doi: 10.1038/s41467-023-36625-7.
80.     Arora V, Mohammed A.S. Abourehab, Modi G, Kesharwani P, Dendrimers as a prospective nanocarrier for targeted delivery against lung cancer, European Polymer Journal. 2022; 180(123):111635. doi: 10.1016/j.eurpolymj.2022.111635.
81.    Zhang D.  Elena N. Atochina V, Maurya DS. Liu M, Xiao Qi, Lu J, Lauri G, Ona N, Reagan EK. Ni H, Weissman D, Percec V. Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers.  Journal of the American Chemical Society. 2021; 143(43): 17975-17982. doi: 10.1021/jacs.1c09585.
82.    Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS Nano. 2020; 14(4): 4890-4904. doi: 10.1021/acsnano.0c00974.
83.    Kesharwani P. Choudhury H. Meher JG.  Pandey M. Gorain B.  Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Progress in Materials Science. 2019: 103: 484-508. doi: 10.1016/j.pmatsci.2019.03.003.
84.    Dong Y, Yu T, Ding L, Laurini E, Huang Y, Zhang M, Weng Y, Lin S, Chen P, Marson D, Jiang Y, Giorgio S, Pricl S, Liu X, Rocchi P, Peng L. A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy. J Am Chem Soc. 2018 Nov 28;140(47):16264-16274. doi: 10.1021/jacs.8b10021.
85.    Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front Pharmacol. 2017; 8:261. doi: 10.3389/fphar.2017.00261.
86.    Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, Sidik SM, Lourido S, Langer R, Bavari S, Ploegh HL, Anderson DG. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci. 2016; 113(29): E4133-42. doi: 10.1073/pnas.1600299113.
87.    Taratula O, Schumann C. Duong T. Taylor KL.  Taratula O.  Dendrimer-encapsulated phthalocyanine as a single agent-based theranostic nano platform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale. 2015; 7(9): 3888-3902. doi.org/10.1039/C4NR06050D
88.    Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci. 2014; 5(1):2-13. doi: 10.1021/cn400182z13.
89.    Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv. 2013; 10(12): 1687-98. doi: 10.1517/17425247.2013.853661.
90.    Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, Romero R, Kannan RM. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med. 2012 Apr 18; 4(130): 130ra46. doi: 10.1126/scitranslmed.3003162.
91.    Wang Y, Cao X.  Guo  R.  Shen  M. Zhang  M.  Zhu M.  Shi  X. Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate. Polymer Chemistry. 2011;  2(8): 1754-1760. doi.org/10.1039/C1PY00179E


Recomonded Articles:

Author(s): Hiral A. Makadia, Ami Y. Bhatt, Ramesh B. Parmar, Ms. Jalpa S. Paun, H.M. Tank

DOI:         Access: Open Access Read More

Author(s): Ashok Thulluru, Nawaz Mahammed, C. Madhavi, K. Nandini, S. Sirisha, D. Spandana

DOI: 10.5958/2231-5691.2019.00016.9         Access: Open Access Read More

Author(s): Kaustubh V. Gavali, Manohar D. Kengar, Kiran V. Chavan, Vaishnavi P. Anekar, Naziya I. Khan

DOI: 10.5958/2231-5691.2019.00020.0         Access: Open Access Read More

Author(s): Prajapati M., Mandloi R., Pillai S, Birla N.

DOI: 10.5958/2231-5691.2020.00021.0         Access: Open Access Read More

Author(s): Bhushan P. Gayakwad, Shashikant D. Barhate, Mayur S. Jain

DOI: 10.5958/2231-5691.2017.00039.9         Access: Open Access Read More

Author(s): Sarika V. Khandbahale

DOI: 10.5958/2231-5691.2019.00021.2         Access: Open Access Read More

Author(s): Sahil Hasan, Saloni Bhandari, Anshu Sharma, Poonam Garg

DOI: 10.52711/2231-5691.2021.00047         Access: Open Access Read More

Author(s): Sheetal B. Gondkar, Shalaka P. Rasal, Ravindra B. Saudagar

DOI: 10.5958/2231-5691.2016.00027.7         Access: Open Access Read More

Author(s): Sarin.a. Chavhan, Sushilkumar. A. Shinde, Sandip. B. Sapkal , Vinayak N. Shrikhande

DOI: 10.5958/2231-5691.2017.00019.3         Access: Open Access Read More

Author(s): Niyaz Kavugoli, Ravikumar, Narayanaswamy VB

DOI: 10.5958/2231-5691.2016.00018.6         Access: Open Access Read More

Author(s): Vidya Dange , Shubhangi Shid, C.S. Magdum ,S.K. Mohite, M.M. Nitalikar

DOI: 10.5958/2231-5691.2015.00032.5         Access: Open Access Read More

Author(s): Kshitij B. Makeshwar, Suraj R. Wasankar

DOI:         Access: Open Access Read More

Author(s): Davesh S. Jire, Nitin S. Gosavi, Roshan B. Badhe, Dipak H. Jagdale

DOI: 10.52711/2231-5691.2021.00033         Access: Open Access Read More

Author(s): Akhil Gupta, Anuj Mittal , Alok Kumar Gupta

DOI:         Access: Open Access Read More

Author(s): P. K. Wagh, S. P. Ahirrao, S. J. Kshirsagar

DOI: 10.5958/2231-5691.2019.00013.3         Access: Open Access Read More

Author(s): Priyanka Joshi, Manju, Mohd Vaseem Fateh, N.G. Raghavendra Rao

DOI: 10.5958/2231-5691.2019.00008.X         Access: Open Access Read More

Author(s): Indrajeet S. Patil, Omkar A. Patil, Girish Chandra R. Mandake, Manoj M. Nitalikar

DOI: 10.5958/2231-5691.2018.00035.7         Access: Open Access Read More

Author(s): Bijay Kumar Sahoo, Sidheswar Prasad Pattajoshi, Sandhyarani Pattajoshi

DOI: 10.5958/2231-5691.2018.00011.4         Access: Open Access Read More

Author(s): Eswaraiah S., Swetha K., Lohita M., P. Jaya Preethi, B. Priyanka, Kiran Kumar Reddy

DOI:         Access: Open Access Read More

Author(s): Abhijit Ray

DOI:         Access: Open Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 


Recent Articles




Tags