REFERENCES:
1. Arjomandi O Khalili, Kavoosi M, Adibi H. Synthesis and enzyme-based evaluation of analogues L-tyrosine thiol carboxylic acid inhibitor of metallo-β-lactamase IMP- 1, J. Enzyme Inhib. Med. Chem. 2019; 34 (1): 1414-1425.
2. Arjomandi O Khalili, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, McGeary RP. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur. J. Med. Chem., 2016; 114: 318-327.
3. Yusof Y, Tan DT, Arjomandi OK, Schenk G, McGeary RP. Captopril analogues as metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2016; 26 (6): 1589-1593.
4. McGeary RP, Tan DT, Schenk G. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem., 2017; 9 (7): 673-691.
5. King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci., 2011; 20 (9): 1484-1491.
6. Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug. Resist. Update, 2018; 36: 13-29.
7. Everett M, Sprynski N, Coelho A, Castandet J, Bayet M, Bougnon J, Lozano C, Davies DT, Leiris S, Zalacain M, Morrissey I, Magnet S, Holden K, Warn P, De Luca F, Docquier JD, Lemonnier M. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant enterobacteriaceae antimicrob, Agents Chemother., 2018; 62 (5): e00074-18.
8. Shi C, Chen J, Kang X, Shen X, Lao X, Zheng H. Approaches for the discovery of metallo‐β‐Lactamase inhibitors: a review. Chem. Biol. Drug Des, 2019.
9. Page MI, Badarau A. The mechanisms of catalysis by metallo beta-lactamases, Bioinorg. Chem. Appl., 2008.
10. Diaz N, Suarez D, Merz KM. Zinc metallo-β-lactamase from Bacteroides fragilis: A quantum chemical study on model systems of the active site. J. Am. Chem. Soc., 2000; 122 (17): 4197-4208.
11. Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol. 2007; 74 (12): 1686-1701.
12. Crowder MW, Spencer J, Vila AJ. Metallo-β-lactamases: Novel weaponry for antibiotic resistance in bacteria, Acc. Chem. Res., 2006; 39: 721-728.
13. Moran-Barrio J, Gonzalez JM, Lisa MN, Costello AL, Dal PM, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ. The metallo-β-lactamase GOB is a mono-Zn (ii) enzyme with a novel active site. J. Biol. Chem., 2007; 282 (25): 18286-18293.
14. Paul-Soto R, Bauer R, Frere JM, Galleni M, Mayer-Klaucke W, Nolting H, G.M., Rossolini SD. Hernandez-Valladares M. Zeppezauer M. Adolph HW. Mono and binuclear Zn2+-β-lactamase. Role of the conserved cysteine in the catalytic mechanism, J. Biol. Chem., 1999; 274(19): 13242-13249.
15. Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-lactamases: a major threat to human health, J. Mol. Biol. 2014; 4 (03): 11-15.
16. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM. Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 2001; 45 (3): 660-663.
17. Lienard BMR, Papamicael C, Schofield CJ, Garau G, Dideberg O, Horsfall L, Lassaux P, Galleni M, Frere JM, Karsisiotis AI, Damblon C, Roberts GCK. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org. Biomol. Chem., 2008; 6 (13): 2282-2294.
18. Palzkill T. Metallo-β-lactamase structure and function, Ann N.Y Acad Sci, 2013; 1277 (1): 91-104.
19. Babini GS, Danel F, Munro SD, Micklesen PA, Livermore DM. Unusual tazobactam- sensitive Amp-C β-lactamase from two Escherichia coli isolates, J. Antimicrob. Chemother., 1998; 41: 115-118.
20. Goto M, Takahashi T, Yamashita F, Koreeda A, Mori H, Ohta M, Arakawa Y. Inhibition of the metallo-β-lactamase produced from serratia marcescens by thiol compounds. Chem. Biol. Drug. Des., 1997; 20: 1136-1140.
21. Mollard C, Moali C, Papamicael C, Damblon C, Vessilier S, Amicosante G, Schofield CJ, Galleni M, Frere JM, Roberts GCK. Thiomandelic acid, a broad spectrum inhibitor of zinc β-lactamases, J. Biol. Chem., 2001; 276 (48): 45015-45023.
22. Hammond GG, Huber JL, Greenlee ML, Laub JB, Young K, Silver LL, Balkovec JM, Pryor KD, Wu JK, Leiting B, Pompliano DL, Toney JH. Inhibition of IMP-1 metallo-beta-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives. FEMS Microbiol. Lett., 1999; 179 (2): 289-296.
23. Heinz U, Bauer R, Wommer S, Meyer-Klaucke W, Papamichaels C, Bateson J, Adolph HW. Coordination geometries of metal ions in D- or L-captopril-inhibited metallo-β-lactamases. J. Biol. Chem. 2003; 278 (23): 20659-20666.
24. Hussein WM, Fatahala SS, Mohamed ZM, McGeary RP, Schenk G, Ollis DL, Mohamed MS. Synthesis and Kinetic Testing of Tetrahydropyrimidine-2-thione and Pyrrole Derivatives as Inhibitors of the Metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa, Chem. Biol. Drug. Des., (2012); 80 (4) 500–515.
25. Hussein WM, Vella P, Islam NU, Ollis DL, Schenk G, McGeary RP. 3- Mercapto-1, 2, 4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 2012; 22 (1): 380-386.
26. Mohamed MS, Hussein WM, McGeary RP, Vella P, Schenk G, El-hameed RHA. Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011; 46 (12): 6075-6082.
27. Simm AM, Loveridge EJ, Crosby J, Avison MB, Walsh TR, Bennett PM. Bulgecin A: a novel inhibitor of binuclear metallo-β-lactamases. Biochem. J. 2005; 387: 585-590.
28. Hiraiwa Y, Morinaka A, Fukushima T, Kudo T. Metallo-β-lactamase inhibitory activity of phthalic acid derivatives. Bioorg. Med. Chem. Lett., 2009; 19 (17): 5162-5165.
29. Toney JH, Hammond GG, Fitzgerald PMD, Sharma N, Balkovec JM, Rouen GP, Olson SH, Hammond ML, Greenlee ML, Gao YD. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-β-lactamase. J. Biol. Chem., 2001; 276 (34): 31913-31918.
30. Nauton L, Kahn R, Garau G, Hernandez JF, O. Dideberg. Structural insights into the design of inhibitors for the L1 Metallo-β-lactamase from Stenotrophomonas maltophilia, J. Mol. Biol., 2008; 375 (1): 257-269.
31. Olsen L, S. Jost, HW, Pettersson I. Adolph, Hemmingsen L, Jorgensen FS. New leads of metallo-β-lactamase inhibitors from structure-based pharmacophore design. Bioorg. Med. Chem., 2006; 14: 2627-2635.
32. Feng L, Yang KW, Zhou LS, Xiao JM, Yang X, Zhai L, Zhang YL, Crowder MW. N-Heterocyclic dicarboxylic acids: broad-spectrum inhibitors of metallo-β-lactamases with co-antibacterial effect against antibiotic-resistant bacteria, Bioorg. Med. Chem. Lett. 2012; 22(16): 5185–5189.
33. Hiraiwa Y, Saito J, Watanabe T, Yamada M, Morinaka A, Fukushima T, Kudo T. X-ray crystallographic analysis of IMP-1 metallo-β-lactamase complexed with a 3- aminophthalic acid derivative, structure-based drug design, and synthesis of 3, 6- disubstituted phthalic acid derivative inhibitors. Bioorg. Med. Chem. Lett. 2014; 24(20): 4891-4894.
34. Walter MW, Felici A, Galleni M, Soto RP, Adlington RM, Baldwin JE, Frere JM, Gololobov M, Schofield CJ. Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases, Bioorg. Med. Chem. Lett. 1996; 6 (20): 2455–2458.
35. Walter MW, Valladares MH, Adlington RM, Amicosante G, Baldwin JE, Frere JM, Galleni M, Rossolini GM, Schofield CJ. Hydroxamate inhibitors of aeromonas hydrophila AE036 metallo-beta-lactamase, Bioorg Chem. 1999; 27(1): 35-40.
36. Toney JH, Fitzgerald PMD, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK, Kozarich JW, Pompliano DL, Hammond GG. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of bacteroides fragilis metallo-β-lactamase, Chem. Biol. 1998; 5 (4):185-196.
37. Siemann S, Evanoff DP, Marrone L, Clarke AJ, Viswanatha T, Dmitrienko GI. N-Arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-β-lactamase. Antimicrob. Agents Chemother. 2002; 46 (8): 2450-2457.
38. Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 2010; 23: 160-201.
39. Vella P, Hussein WM, Leung EW, Clayton D, Ollis DL, Mitic N, Schenk G, McGeary RP. The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett. 2011; 21: 3282–3285.
40. Salvio R, Cacciapaglia R, Mandolini L. General base–guanidinium cooperation in bifunctional artificial phosphodiesterases. J. Org. Chem. 2011; 76 (13): 5438-5443.
41. Roumen L, Peeters JW, Emmen JMA, Beugels IPE, Custers EMG, Gooyer de M, R., Plate K, PAJ Pieterse, JFM Hilbers, JAJ Smits, D Vekemans, HCJ Leysen, HM Ottenheijm, JJR Janssen. Synthesis, biological evaluation, and molecular modeling of 1-benzyl-1h-imidazoles as selective inhibitors of aldosterone synthase (CYP11B2), J. Med. Chem. 2010; 53 (4): 1712-1725.
42. Vallee C, Chauvin Y, Basset JM, Santini CC, Galland JC. Design of ionic phosphites for catalytic hydrocyanation reaction of 3-pentenenitrile in ionic liquids, Adv. Synth. Catal. 2005; 347 (14): 1835-1847.
43. Bebrone C, Moali C, Mahy F, Rival S, Docquier JD, Rossolini GM, Fastrez J, Pratt RF, Frere JM, Galleni M. CENTA as a chromogenic substrate for studying β- lactamases, Antimicrob. Agents Chemother. 2001; 45: 1868-1871.
44. Maccallini C, Patruno A, Lannutti F, Ammazzalorso A, Filippis De B, Fantacuzzi M, S. Franceschelli, L. Giampietro, S. Masella, M. Felaco, N. Re, R. Amoroso, N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase, Bioorg. Med. Chem. Lett. 2010; 20(22): 6495–6499.
45. Hille UE, Zimmer C, Vock CA, Hartmann RW. First selective CYP11B1 inhibitors for the treatment of cortisol-dependent diseases. ACS Med. Chem. Lett. 2010; 2(1): 2-6.
46. Byun YS, Jung CH, Park YT. Synthesis of 5H-imidazo [5,1-a] isoindole: photocyclization of N, N′ -bis(o-chlorobenzyl) imidazolium chloride and N-(o-chlorobenzyl) imidazole, J. Heterocycl. Chem. 1995; 32(6): 1835–1837.
47. Nakamura S, Kawasaki I, Yamashita M, Ohta S. 1-Methyl-3-trimethylsilylparabanic acid as an effective reagent for the preparation of N-substituted (1-methyl-2, 5-dioxo-1,2,5h-imidazolin-4-yl)-amines and its application to the total synthesis of isonaamidines A and C, antitumor imidazole alkaloids, Heterocycles, 2003; 60: 583-598.
48. Lee HM, Lu CY, Chen CY, Chen WL, Lin HC, Chiu PL, Cheng PY. Palladium complexes with ethylene-bridged bis (N-heterocyclic carbene) for C-C coupling reactions, Tetrahedron, 2004; 60(27): 5807-5825.
49. Porretta GC, Biava M, Cerreto F, Scalzo M, Panico S, Simonetti N, Villa A. Research on anti-bacterial and anti-fungal agents II. Synthesis and anti-fungal activity of new (1H-imidazol-1-ylmethyl)-benzenamine derivatives, Eur. J. Med. Chem 1988; 23(4): 311-317.
50. O’Neill PM, Shone AE, Stanford D, Nixon G, Asadollahy E, Park BK, Maggs JL. Synthesis, antimalarial activity, and preclinical pharmacology of a novel series of 4′-fluoro and 4′-chloro analogues of amodiaquine. Identification of a suitable “back-up” compound for n-tert-butyl isoquine, J. Med. Chem. 2009; 52(7): 1828-1844.
51. Yang H, Li Y, Jiang M, Wang J, Fu H. General copper-catalyzed transformations of functional groups from arylboronic acids in water, Chem. Eur. J. 2011; 17(20): 5652-5660.
52. Pardo C, Graf S, Ramos M, Sesmilo E, Elguero J. Synthesis of 1-(p-nitrobenzyl) azoles and 1-(p-nitrobenzyl) benzazoles, Org. Prep. Proced. Int. 2000; 32 (4): 385-390.
53. Street LJ, Baker R, Davey WB, Guiblin AR, Jelley RA, Reeve AJ, Routledge H, Sternfeld F, Watt AP. Synthesis and serotonergic activity of n, ndimethyl- 2-[5-(1,2,4-triazol-1-ylmethyl)-1h-indol-3-yl]ethylamine and analogs: Potent agonists for 5-ht1d receptors, J. Med. Chem. 1995; 38(10): 1799-1810.