Author(s): Bharat Kumar Tyagi, Chandra Kishore Tyagi


DOI: 10.5958/2231-5691.2020.00026.X   

Address: Bharat Kumar Tyagi, Chandra Kishore Tyagi
Sri Satya Sai University of Technology and Medical Sciences, Village Pachama, Sehore-466001, Madhya Pradesh.
*Corresponding Author

Published In:   Volume - 10,      Issue - 3,     Year - 2020

Mutations in bacteria can result in antibiotic resistance due to the overuse or abuse of ß-lactam antibiotics. One strategy which bacteria can become resistance toward antibiotics is secreting of metallo-ß-lactamase enzymes that can open the lactam ring of the ß-lactam antibiotic and inactivate them. This issue is a threat for human health and one strategy to overcome this situation is co-administration of ß-lactam antibiotics with an inhibitor. So far, no clinically available inhibitors of metallo ß-lactamases (MBLs) reported and the clinically inhibitors of serine ß-lactamase are useless for MBLs. Accordingly, finding a potent inhibitor of the MBLs being very important. In this study, imidazole derivatives primarily were synthesized and their inhibitory activity was measured. Later in silico binding model was used to predict the configuration and conformation of the ligands into the active site of enzyme. Two molecules demonstrated with IC50 of 39 µM and 46 µM against MBL (IMP-1).

Cite this article:
Bharat Kumar Tyagi, Chandra Kishore Tyagi. Synthesis and Biological Evaluation of Imidazole derivatives against the Metallo-Β-Lactamase IMP-1. Asian J. Pharm. Res. 2020; 10(3):140-148. doi: 10.5958/2231-5691.2020.00026.X

Bharat Kumar Tyagi, Chandra Kishore Tyagi. Synthesis and Biological Evaluation of Imidazole derivatives against the Metallo-Β-Lactamase IMP-1. Asian J. Pharm. Res. 2020; 10(3):140-148. doi: 10.5958/2231-5691.2020.00026.X   Available on:

1. Arjomandi O Khalili, Kavoosi M, Adibi H. Synthesis and enzyme-based evaluation of analogues L-tyrosine thiol carboxylic acid inhibitor of metallo-β-lactamase IMP- 1, J. Enzyme Inhib. Med. Chem. 2019; 34 (1): 1414-1425.
2. Arjomandi O Khalili, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, McGeary RP. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur. J. Med. Chem., 2016; 114: 318-327.
3. Yusof Y, Tan DT, Arjomandi OK, Schenk G, McGeary RP. Captopril analogues as metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2016; 26 (6): 1589-1593.
4. McGeary RP, Tan DT, Schenk G. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem., 2017; 9 (7): 673-691.
5. King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci., 2011; 20 (9): 1484-1491.
6. Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug. Resist. Update, 2018; 36: 13-29.
7. Everett M, Sprynski N, Coelho A, Castandet J, Bayet M, Bougnon J, Lozano C, Davies DT, Leiris S, Zalacain M, Morrissey I, Magnet S, Holden K, Warn P, De Luca F, Docquier JD, Lemonnier M. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant enterobacteriaceae antimicrob, Agents Chemother., 2018; 62 (5): e00074-18.
8. Shi C, Chen J, Kang X, Shen X, Lao X, Zheng H. Approaches for the discovery of metallo‐β‐Lactamase inhibitors: a review. Chem. Biol. Drug Des, 2019.
9. Page MI, Badarau A. The mechanisms of catalysis by metallo beta-lactamases, Bioinorg. Chem. Appl., 2008.
10. Diaz N, Suarez D, Merz KM. Zinc metallo-β-lactamase from Bacteroides fragilis: A quantum chemical study on model systems of the active site. J. Am. Chem. Soc., 2000; 122 (17): 4197-4208.
11. Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol. 2007; 74 (12): 1686-1701.
12. Crowder MW, Spencer J, Vila AJ. Metallo-β-lactamases: Novel weaponry for antibiotic resistance in bacteria, Acc. Chem. Res., 2006; 39: 721-728.
13. Moran-Barrio J, Gonzalez JM, Lisa MN, Costello AL, Dal PM, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ. The metallo-β-lactamase GOB is a mono-Zn (ii) enzyme with a novel active site. J. Biol. Chem., 2007; 282 (25): 18286-18293.
14. Paul-Soto R, Bauer R, Frere JM, Galleni M, Mayer-Klaucke W, Nolting H, G.M., Rossolini SD. Hernandez-Valladares M. Zeppezauer M. Adolph HW. Mono and binuclear Zn2+-β-lactamase. Role of the conserved cysteine in the catalytic mechanism, J. Biol. Chem., 1999; 274(19): 13242-13249.
15. Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-lactamases: a major threat to human health, J. Mol. Biol. 2014; 4 (03): 11-15.
16. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM. Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 2001; 45 (3): 660-663.
17. Lienard BMR, Papamicael C, Schofield CJ, Garau G, Dideberg O, Horsfall L, Lassaux P, Galleni M, Frere JM, Karsisiotis AI, Damblon C, Roberts GCK. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org. Biomol. Chem., 2008; 6 (13): 2282-2294.
18. Palzkill T. Metallo-β-lactamase structure and function, Ann N.Y Acad Sci, 2013; 1277 (1): 91-104.
19. Babini GS, Danel F, Munro SD, Micklesen PA, Livermore DM. Unusual tazobactam- sensitive Amp-C β-lactamase from two Escherichia coli isolates, J. Antimicrob. Chemother., 1998; 41: 115-118.
20. Goto M, Takahashi T, Yamashita F, Koreeda A, Mori H, Ohta M, Arakawa Y. Inhibition of the metallo-β-lactamase produced from serratia marcescens by thiol compounds. Chem. Biol. Drug. Des., 1997; 20: 1136-1140.
21. Mollard C, Moali C, Papamicael C, Damblon C, Vessilier S, Amicosante G, Schofield CJ, Galleni M, Frere JM, Roberts GCK. Thiomandelic acid, a broad spectrum inhibitor of zinc β-lactamases, J. Biol. Chem., 2001; 276 (48): 45015-45023.
22. Hammond GG, Huber JL, Greenlee ML, Laub JB, Young K, Silver LL, Balkovec JM, Pryor KD, Wu JK, Leiting B, Pompliano DL, Toney JH. Inhibition of IMP-1 metallo-beta-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives. FEMS Microbiol. Lett., 1999; 179 (2): 289-296.
23. Heinz U, Bauer R, Wommer S, Meyer-Klaucke W, Papamichaels C, Bateson J, Adolph HW. Coordination geometries of metal ions in D- or L-captopril-inhibited metallo-β-lactamases. J. Biol. Chem. 2003; 278 (23): 20659-20666.
24. Hussein WM, Fatahala SS, Mohamed ZM, McGeary RP, Schenk G, Ollis DL, Mohamed MS. Synthesis and Kinetic Testing of Tetrahydropyrimidine-2-thione and Pyrrole Derivatives as Inhibitors of the Metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa, Chem. Biol. Drug. Des., (2012); 80 (4) 500–515.
25. Hussein WM, Vella P, Islam NU, Ollis DL, Schenk G, McGeary RP. 3- Mercapto-1, 2, 4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 2012; 22 (1): 380-386.
26. Mohamed MS, Hussein WM, McGeary RP, Vella P, Schenk G, El-hameed RHA. Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011; 46 (12): 6075-6082.
27. Simm AM, Loveridge EJ, Crosby J, Avison MB, Walsh TR, Bennett PM. Bulgecin A: a novel inhibitor of binuclear metallo-β-lactamases. Biochem. J. 2005; 387: 585-590.
28. Hiraiwa Y, Morinaka A, Fukushima T, Kudo T. Metallo-β-lactamase inhibitory activity of phthalic acid derivatives. Bioorg. Med. Chem. Lett., 2009; 19 (17): 5162-5165.
29. Toney JH, Hammond GG, Fitzgerald PMD, Sharma N, Balkovec JM, Rouen GP, Olson SH, Hammond ML, Greenlee ML, Gao YD. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-β-lactamase. J. Biol. Chem., 2001; 276 (34): 31913-31918.
30. Nauton L, Kahn R, Garau G, Hernandez JF, O. Dideberg. Structural insights into the design of inhibitors for the L1 Metallo-β-lactamase from Stenotrophomonas maltophilia, J. Mol. Biol., 2008; 375 (1): 257-269.
31. Olsen L, S. Jost, HW, Pettersson I. Adolph, Hemmingsen L, Jorgensen FS. New leads of metallo-β-lactamase inhibitors from structure-based pharmacophore design. Bioorg. Med. Chem., 2006; 14: 2627-2635.
32. Feng L, Yang KW, Zhou LS, Xiao JM, Yang X, Zhai L, Zhang YL, Crowder MW. N-Heterocyclic dicarboxylic acids: broad-spectrum inhibitors of metallo-β-lactamases with co-antibacterial effect against antibiotic-resistant bacteria, Bioorg. Med. Chem. Lett. 2012; 22(16): 5185–5189.
33. Hiraiwa Y, Saito J, Watanabe T, Yamada M, Morinaka A, Fukushima T, Kudo T. X-ray crystallographic analysis of IMP-1 metallo-β-lactamase complexed with a 3- aminophthalic acid derivative, structure-based drug design, and synthesis of 3, 6- disubstituted phthalic acid derivative inhibitors. Bioorg. Med. Chem. Lett. 2014; 24(20): 4891-4894.
34. Walter MW, Felici A, Galleni M, Soto RP, Adlington RM, Baldwin JE, Frere JM, Gololobov M, Schofield CJ. Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases, Bioorg. Med. Chem. Lett. 1996; 6 (20): 2455–2458.
35. Walter MW, Valladares MH, Adlington RM, Amicosante G, Baldwin JE, Frere JM, Galleni M, Rossolini GM, Schofield CJ. Hydroxamate inhibitors of aeromonas hydrophila AE036 metallo-beta-lactamase, Bioorg Chem. 1999; 27(1): 35-40.
36. Toney JH, Fitzgerald PMD, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK, Kozarich JW, Pompliano DL, Hammond GG. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of bacteroides fragilis metallo-β-lactamase, Chem. Biol. 1998; 5 (4):185-196.
37. Siemann S, Evanoff DP, Marrone L, Clarke AJ, Viswanatha T, Dmitrienko GI. N-Arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-β-lactamase. Antimicrob. Agents Chemother. 2002; 46 (8): 2450-2457.
38. Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 2010; 23: 160-201.
39. Vella P, Hussein WM, Leung EW, Clayton D, Ollis DL, Mitic N, Schenk G, McGeary RP. The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett. 2011; 21: 3282–3285.
40. Salvio R, Cacciapaglia R, Mandolini L. General base–guanidinium cooperation in bifunctional artificial phosphodiesterases. J. Org. Chem. 2011; 76 (13): 5438-5443.
41. Roumen L, Peeters JW, Emmen JMA, Beugels IPE, Custers EMG, Gooyer de M, R., Plate K, PAJ Pieterse, JFM Hilbers, JAJ Smits, D Vekemans, HCJ Leysen, HM Ottenheijm, JJR Janssen. Synthesis, biological evaluation, and molecular modeling of 1-benzyl-1h-imidazoles as selective inhibitors of aldosterone synthase (CYP11B2), J. Med. Chem. 2010; 53 (4): 1712-1725.
42. Vallee C, Chauvin Y, Basset JM, Santini CC, Galland JC. Design of ionic phosphites for catalytic hydrocyanation reaction of 3-pentenenitrile in ionic liquids, Adv. Synth. Catal. 2005; 347 (14): 1835-1847.
43. Bebrone C, Moali C, Mahy F, Rival S, Docquier JD, Rossolini GM, Fastrez J, Pratt RF, Frere JM, Galleni M. CENTA as a chromogenic substrate for studying β- lactamases, Antimicrob. Agents Chemother. 2001; 45: 1868-1871.
44. Maccallini C, Patruno A, Lannutti F, Ammazzalorso A, Filippis De B, Fantacuzzi M, S. Franceschelli, L. Giampietro, S. Masella, M. Felaco, N. Re, R. Amoroso, N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase, Bioorg. Med. Chem. Lett. 2010; 20(22): 6495–6499.
45. Hille UE, Zimmer C, Vock CA, Hartmann RW. First selective CYP11B1 inhibitors for the treatment of cortisol-dependent diseases. ACS Med. Chem. Lett. 2010; 2(1): 2-6.
46. Byun YS, Jung CH, Park YT. Synthesis of 5H-imidazo [5,1-a] isoindole: photocyclization of N, N′ -bis(o-chlorobenzyl) imidazolium chloride and N-(o-chlorobenzyl) imidazole, J. Heterocycl. Chem. 1995; 32(6): 1835–1837.
47. Nakamura S, Kawasaki I, Yamashita M, Ohta S. 1-Methyl-3-trimethylsilylparabanic acid as an effective reagent for the preparation of N-substituted (1-methyl-2, 5-dioxo-1,2,5h-imidazolin-4-yl)-amines and its application to the total synthesis of isonaamidines A and C, antitumor imidazole alkaloids, Heterocycles, 2003; 60: 583-598.
48. Lee HM, Lu CY, Chen CY, Chen WL, Lin HC, Chiu PL, Cheng PY. Palladium complexes with ethylene-bridged bis (N-heterocyclic carbene) for C-C coupling reactions, Tetrahedron, 2004; 60(27): 5807-5825.
49. Porretta GC, Biava M, Cerreto F, Scalzo M, Panico S, Simonetti N, Villa A. Research on anti-bacterial and anti-fungal agents II. Synthesis and anti-fungal activity of new (1H-imidazol-1-ylmethyl)-benzenamine derivatives, Eur. J. Med. Chem 1988; 23(4): 311-317.
50. O’Neill PM, Shone AE, Stanford D, Nixon G, Asadollahy E, Park BK, Maggs JL. Synthesis, antimalarial activity, and preclinical pharmacology of a novel series of 4′-fluoro and 4′-chloro analogues of amodiaquine. Identification of a suitable “back-up” compound for n-tert-butyl isoquine, J. Med. Chem. 2009; 52(7): 1828-1844.
51. Yang H, Li Y, Jiang M, Wang J, Fu H. General copper-catalyzed transformations of functional groups from arylboronic acids in water, Chem. Eur. J. 2011; 17(20): 5652-5660.
52. Pardo C, Graf S, Ramos M, Sesmilo E, Elguero J. Synthesis of 1-(p-nitrobenzyl) azoles and 1-(p-nitrobenzyl) benzazoles, Org. Prep. Proced. Int. 2000; 32 (4): 385-390.
53. Street LJ, Baker R, Davey WB, Guiblin AR, Jelley RA, Reeve AJ, Routledge H, Sternfeld F, Watt AP. Synthesis and serotonergic activity of n, ndimethyl- 2-[5-(1,2,4-triazol-1-ylmethyl)-1h-indol-3-yl]ethylamine and analogs: Potent agonists for 5-ht1d receptors, J. Med. Chem. 1995; 38(10): 1799-1810.

Recomonded Articles:

Author(s): Ramchandra Jadhav, Kishor More, Dileep Khandekar, Ramesh Yamgar, Sudhir Sawant

DOI:         Access: Open Access Read More

Author(s): Binoy Varghese Cheriyan, Sabartina scarlet, Priyadarshini, Shailesh joshi, Santhseelan, Sheik Mohamed

DOI: 10.5958/2231-5691.2019.00032.7         Access: Open Access Read More

Author(s): Preeti Tiwari

DOI:         Access: Open Access Read More

Author(s): Sonali Mahaparale, Diksha Banju

DOI: 10.5958/2231-5691.2019.00035.2         Access: Open Access Read More

Author(s): Vinay C H, Prakash Goudanavar, Ankit Acharya, Mohammed Gulzar Ahmed, Prem Kumar S R

DOI: 10.5958/2231-5691.2018.00012.6         Access: Open Access Read More

Author(s): V Jhansipriya Marabathuni, K. Mariyamma, K. Sravani, S. Ramaiah, P. Ravindra, R. Srihari

DOI: 10.5958/2231-5691.2017.00026.0         Access: Open Access Read More

Author(s): Mayur S. Jain, Shashikant D. Barhate, Bhushan P. Gayakwad, Prafull P. Patil

DOI: 10.5958/2231-5691.2018.00019.9         Access: Open Access Read More

Author(s): P. Muthukumaran, P. Shanmuganathan , C. Malathi

DOI:         Access: Open Access Read More

Author(s): S. A. Mohite, R. R. Shah, N. R. Patel

DOI: 10.5958/2231-5691.2018.00004.7         Access: Open Access Read More

Author(s): Jaseela KP, Anjan Kumar, Veeresh Babu. D, Narayana Swamy V.B

DOI: 10.5958/2231-5691.2016.00014.9         Access: Open Access Read More

Author(s): Muhammad Hamza Ashfaq, Amna Siddique, Sammia Shahid

DOI: 10.52711/2231-5691.2021.00021         Access: Open Access Read More

Author(s): S. Sathish Kumar, G. Melchias, P. Ravikumar, R. Chandrasekar, P. Kumaravel

DOI:         Access: Open Access Read More

Author(s): Pooja S. Awate, Tejashree P. Pimple, Jeeja F. Pananchery, Ashish S. Jain

DOI: 10.5958/2231-5691.2020.00027.1         Access: Open Access Read More

Author(s): Uma Sankar Gorla,. M. Savithri, G.S.N. Koteswara Rao,. Y. Niharika, . P. Devi Sree Sathya, . V. Harika

DOI: 10.5958/2231-5691.2018.00006.0         Access: Open Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 

Recent Articles