Author(s): Suryakant Verma, Pranjal Kumar Singh, Jonee Panwar, Vikesh Kumar Shukla, T. S. Easwari

Email(s): surajmeerut@gmail.com

DOI: 10.52711/2231-5691.2024.00023   

Address: Suryakant Verma1*, Pranjal Kumar Singh2, Jonee Panwar3, Vikesh Kumar Shukla4, T. S. Easwari5
1Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology, NH-58, Partapur Bypass, Meerut - 250103, Uttar Pradesh, India.
2Department of Pharmaceutics, SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, Ghaziabad-201204, Uttar Pradesh, India.
3Department of Pharmacy, Meerut Institute of Technology, NH-58, Partapur Bypass, Meerut-250103, Uttar Pradesh, India.
4Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Campus, Noida-201313, Uttar Pradesh, India.
5Department of Pharmaceutics, IIMT College of Medical Sciences, IIMT University, Meerut-201012, Uttar Pradesh, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 2,     Year - 2024


ABSTRACT:
Objective: The purpose of thecurrent research involves the design, development and characterization of Gentamicin floating microspheres to improve the residence time in the stomach without affecting, and contact with the gastric mucosa. Methods: Capillary extrusion technique used for the preparation of gentamicin floating microspheres by using sodium lauryl sulphate, sodium tripolyphosphate as a cross-linking agent, and chitosan as apolymer. After preparation, the surface morphology of microspheres was evaluated by the optical microscope and scanning electron microscope. Results: During this study, the effect of the stirring rate, polymer concentration and cross-linking concentration on the percent yield, in vitro floating behavior, and physical state of the incorporated drug, drug loading, and in-vitro drug releasewere examined. The prepared microspheres show prolonged drug release (twelve hours) and remained buoyant for more than eleven hours. The microspheres were found to be highly porous in nature and regular in shape. The Gentamicin release rate was found to be higher in the case of microspheres prepared at a higher agitation speed and decreased with increasing the polymer and cross-linking agent concentration. All formulations established favorable in vitro floating characteristics. The drug entrapment improved from 65.20 to 95.40%, by increasing polymer-to-drug ratio. The key release mechanism was found to be diffusion. it is observed that there is no significant changesin swelling ratio, % drug content, buoyancy lag time, or in vitro dissolution pattern after storage at accelerated stability condition for six months. Conclusion: Thus, the developed Gentamicin floating microspheres can demonstrate to be potential candidates for any intragastric conditions, as multiple-unit delivery systems areadaptable.


Cite this article:
Suryakant Verma, Pranjal Kumar Singh, Jonee Panwar, Vikesh Kumar Shukla, T. S. Easwari. Design and Characterisation of Gentamicin Floating Microspheres as Potential Drug Carrier for the treatment of Intra-Abdominal Infection. Asian Journal of Pharmaceutical Research. 2024; 14(2):133-0. doi: 10.52711/2231-5691.2024.00023

Cite(Electronic):
Suryakant Verma, Pranjal Kumar Singh, Jonee Panwar, Vikesh Kumar Shukla, T. S. Easwari. Design and Characterisation of Gentamicin Floating Microspheres as Potential Drug Carrier for the treatment of Intra-Abdominal Infection. Asian Journal of Pharmaceutical Research. 2024; 14(2):133-0. doi: 10.52711/2231-5691.2024.00023   Available on: https://asianjpr.com/AbstractView.aspx?PID=2024-14-2-8


REFERENCES:
1.    Sato, Y.; Kawashima, Y.; Takeuchi, H.; Yamamoto, H. Physicochemical properties to determine the buoyancy of hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method. Eur. J. Pharm. Biopharm. 2003; 55(3): 297-304. http://dx.doi.org/10.1016/S0939-6411(03)00003-1 PMID: 12754004
2.    Das, M.K.; Rama Rao, K. Microencapsulation of zidovudine by double emulsion solvent diffusion technique using ethylcellulose. Indian J. Pharm. Sci. 2007; 69: 244-250. http://dx.doi.org/10.4103/0250-474X.33151
3.    Orienti, I.; Aiedeh, K.; Gianasi, E.; Bertasi, V.; Zecchi, V. Indomethacin loaded chitosan microspheres. Correlation between the erosion process and release kinetics. J. Microencapsul. 1996; 13(4): 463-472. http://dx.doi.org/10.3109/02652049609026031 PMID: 8808782
4.    Trissel, L.A. Handbook on injectable drugs, 17th ed; American Society of Health-System Pharmacists: Bethesda, MD, 2013, pp. 557-568.
5.    El-Nahas, H.M.; Hosny, K.M. Chitosan-based floating microspheres of trimetazidin dihydrochloride; Preparation and in vitro characterization. Indian J. Pharm. Sci. 2011; 73(4): 397-403. PMID: 22707823
6.    Indian Pharmacopoeia. Government of India; Ministry of Health and Family Welfare. Vol.1 The Indian Pharmacopoeia Commission: Ghaziabad, 2007. Government of India;
7.    Shu, X.Z.; Zhu, K.J. A novel approach to prepare tripolyphosphate/ chitosan complex beads for controlled release drug delivery. Int. J. Pharm. 2000; 201(1): 51-58. http://dx.doi.org/10.1016/S0378-5173(00)00403-8 PMID: 10867264
8.    Lachman, L; Lieberman, H.A; Kanig, J.L. The Theory and Practice of Industrial Pharmacy. 1987.
9.    Martin, A. Physical Pharmacy Physical and Chemical Principles in the Pharmaceutical Sciences, 4; Lippincott Williams and Wilkins: Maryland USA, 2001, pp. 443-448.
10.    United State Pharmacopoeia.The national formulary; United States Pharmacopoeial Convention Inc. Rockviled, MD, 2007, p. 1254.
11.    Nirmala, A. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surf. A Physicochem. Eng. Asp. 2007; 297: 63-70. http://dx.doi.org/10.1016/j.colsurfa.2006.10.024
12.    Atul Bisen, Alok Pal Jain, Suchit Jain. Formulation and Evaluation of Zidovudine Loaded Microsphere. Asian J. Res. Pharm. Sci. 2013; 3(4): 200-205.
13.    Rahul Rajge, Saad Khan. Formulation and Characterization of Mucoadhesive Microspheres of Oxazolidines Class Drug for the Treatment of Loosen Enteritis. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(1): 1-7.
14.    Singh, D. Optimization and characterization of gentamicin loaded chitosan microspheres for effective wound healing Indian J. Pharm. Educ. Res., 2010, 44(Issue.2), 112-118.
15.    AVS Madhu Latha, T Naga Ravikiran, J N Suresh Kumar. Formulation, Optimization and Evaluation of Glibenclamide Transdermal Patches by using chitosan Polymer. Asian J. Pharm. Tech. 2019; 9(1): 1-7.
16.    N. Tara Sowjanya, R. Dhivya, K. Meenakshi, K.A. Vedhanayakisri. Potential Applications of Chitosan Nanoparticles as Novel Support in Enzyme Immobilization. Research J. Engineering and Tech. 2013; 4(4): 288-294.
17.    Vivek Jain, Gopal Garg, U.K. Patil, Shailesh Jain. Recent Perspectives of Chitosan: A Review. Research J. Pharma. Dosage Forms and Tech. 2010; 2(3): 220-224.
18.    El-Gibaly, I. Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: Comparison with non-floating chitosan microspheres. Int. J. Pharm., 2002; 249(1-2): 7-21. http://dx.doi.org/10.1016/S0378-5173(02)00396-4 PMID: 12433430
19.    Tirnja Rahangdale, Naveen Gupta, Neeraj Sharma, Ankita Shukla. In vitro Evaluation of Floating Microspheres of Gabapentin by Solvent Evaporation Method. Research Journal of Pharmaceutical Dosage Forms and Technology. 2022; 14(2): 145-9.
20.    Vandana Gupta, Jaya Singh. A Novel Drug Delivery System: Floating Microspheres in the Development of Gastroretentive Drug Delivery System. Research Journal of Topical and Cosmetic Sciences. 2021; 12(2): 86-2.
21.    Stithit, S.; Chen, W.; Price, J.C. Development and characterization of buoyant theophylline microspheres with near zero order release kinetics. J. Microencapsul. 1998; 15(6): 725-737. http://dx.doi.org/10.3109/02652049809008255 PMID: 9818950
22.    T. Immermans, J.; Moës, A.J. Measuring the resultant-weight of an immersed test material: II. Examples of kinetic determinations applied to monolithic dosage forms Acta Pharm Technol. 1990; 36: 176-180.
23.    Colombo, P. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J. Control. Release. 1996; 39: 231-237. http://dx.doi.org/10.1016/0168-3659(95)00158-1
24.    Kotadiya, R.; Patel, V.; Patel, H.; Koradiya, H. Effect of cross-linking on physicochemical properties of chitosan mucoadhesive microspheres: A factorial approach. Int J Green Pharm. 2009; 3: 58-62. http://dx.doi.org/10.4103/0973-8258.49376
25.    Srivastava, A.K.; Ridhurkar, D.N.; Wadhwa, S. Floating microspheres of cimetidine: Formulation, characterization and in vitro evaluation. Acta Pharm., 2005; 55(3): 277-285. PMID: 16375838.
26.    S. Ram Prasad, K. Elango, S. Daisy Chellakumari, S. Dharani. Preparation, Characterization and Anti-Inflammatory Activity of Chitosan Stabilized Silver Nanoparticles. Research J. Pharma. Dosage Forms and Tech. 2013; 5(3): 161-167.
27.    Seema Kashyap, Malti Sao, Harish Sharma, Amrendra Pratap Yadav, Maohan Lal Kori. Nephroprotective Effect of Luteolin against Gentamicin-induced Nephrooxicity in Albino Rats. Res. J. Pharma. Dosage Forms and Tech. 2019; 11(3):181-185.

Recomonded Articles:

Author(s): Ravi Kumar, Komal

DOI: 10.5958/2231-5691.2021.00003.4         Access: Open Access Read More

Author(s): Ashok Thulluru, Nawaz Mahammed, C. Madhavi, K. Nandini, S. Sirisha, D. Spandana

DOI: 10.5958/2231-5691.2019.00016.9         Access: Open Access Read More

Author(s): Hiral A. Makadia, Ami Y. Bhatt, Ramesh B. Parmar, Ms. Jalpa S. Paun, H.M. Tank

DOI:         Access: Open Access Read More

Author(s): B.A. Bhairav, J.K. Bachhav, R.B. Saudagar

DOI: 10.5958/2231-5691.2016.00025.3         Access: Open Access Read More

Author(s): Rutuja R. Shah, Rohan R. Vakhariya

DOI: 10.5958/2231-5691.2020.00003.9         Access: Open Access Read More

Author(s): Rutuja S. Shah, Rutuja R. Shah, Manoj M. Nitalikar, Chandrakant S. Magdum

DOI: 10.5958/2231-5691.2017.00024.7         Access: Open Access Read More

Author(s): Ghanshyam Dhalendra, Trilochan Satapathy, Amit Roy

DOI:         Access: Open Access Read More

Author(s): Sandesh Narayan Somnache, Ajeet Madhukar Godbole, Pankaj Sadashiv Gajare, Sapna Kashyap

DOI: 10.5958/2231-5691.2016.00028.9         Access: Open Access Read More

Author(s): Mercy Mathew, Ravikumar, Simila Madathil, Anju Govind, Narayana Swamy VB

DOI: 10.5958/2231-5691.2016.00015.0         Access: Open Access Read More

Author(s): Snehal B. Kulkarni, M. M. Bari,S. D. Barhate, Ashutosh Tripath

DOI: 10.5958/2231-5691.2019.00003.0         Access: Open Access Read More

Author(s): Lalita Balasaheb Patil, Swapnil S. Patil, Manoj M. Nitalikar, Chandrakant S. Magdum, Shrinivas K. Mohite

DOI: 10.5958/2231-5691.2016.00030.7         Access: Open Access Read More

Author(s): Ashok A. Hajare, Vrushali A. Patil

DOI:         Access: Open Access Read More

Author(s): Debarshi Kar Mahapatra, Ruchi S. Shivhare, Pranesh Kumar

DOI: 10.5958/2231-5691.2018.00002.3         Access: Open Access Read More

Author(s): V. Saranya, P.Madhanraj, A. Panneerselvam

DOI:         Access: Open Access Read More

Author(s): Sampada S. Sawant, Vishal R. Randive, Savita R. Kulkarni

DOI: 10.5958/2231-5691.2017.00013.2         Access: Open Access Read More

Author(s): Bijay Kumar Sahoo, Sidheswar Prasad Pattajoshi, Sandhyarani Pattajoshi

DOI: 10.5958/2231-5691.2018.00011.4         Access: Open Access Read More

Author(s): Vinay C H, Prakash Goudanavar, Ankit Acharya, Mohammed Gulzar Ahmed, Prem Kumar S R

DOI: 10.5958/2231-5691.2018.00012.6         Access: Open Access Read More


Recent Articles




Tags