Author(s): Monesh O. Patil, Yogesh S. Mali, Paresh A. Patil, D. R. Karnavat

Email(s): rcp.pareshpatil@gmail.com

DOI: 10.5958/2231-5691.2020.00039.8   

Address: Monesh O. Patil, Yogesh S. Mali, Paresh A. Patil*, D. R. Karnavat
Ahinsa Institute of Pharmacy, Dondaicha, Tal-Shindkheda, Dhule, MS, 425408 India.
*Corresponding Author

Published In:   Volume - 10,      Issue - 3,     Year - 2020


ABSTRACT:
Tuberculosis (TB) is a leading infectious disease which causes for morbidity as well as mortality. This communicable infectious disease is caused by Mycobacterium tuberculosis. Nanoparticle-based drug delivery systems have considerable potential for treatment of tuberculosis (TB). The important technological advantages of nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, and feasibility of variable routes of administration, including oral application and inhalation.The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. It also reduces the dosage frequency and resolves the difficulty of low poor compliance. Nanoparticle based treatment shows convincing and promising outcomes in the treatment of tuberculosis. This article discuss various nanotechnology-based therapies which can be used for the treatment of TB.


Cite this article:
Monesh O. Patil, Yogesh S. Mali, Paresh A. Patil, D. R. Karnavat. Development of Immunotherapeutic Nanoparticles for treatment of Tuberculosis. Asian J. Pharm. Res. 2020; 10(3):226-232. doi: 10.5958/2231-5691.2020.00039.8


REFERENCES:
1. Mohan H: Textbook of Pathology. Jaypee Brothers Medical Publishers, New Delhi, edition 7th, 2015; 137-141.
www.who.int.global tuberculosis report 2017
2. Patil JS and Shivajirao VTS: Significance of particulate drug delivery system in antimicrobial therapy. AdvPharmacoepidemiol Drug Saf 2016; 5(1): 100e139.
3. Gelperina S, Kisich K, Iseman MD and Heifets L: The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respire Crit Care Med. 2005; 172(12): 1487-1490.
4. K. Bhatt and P. Salgame, “Host innate immune response to Mycobacterium tuberculosis,” Journal of Clinical Immunologyvol. 27, no. 4, pp. 347–362, 2007.
5. I. Vergne, J. Chua, S. B. Singh, and V. Deretic, “Cell biology of Mycobacterium tuberculosis phagosome,” Annual Review ofCell and Developmental Biology, vol. 20, pp. 367–394, 2004.
6. P. Mueller and J. Pieters, “Modulation of macrophage antimicrobial mechanisms by pathogenic mycobacteria,” Immunobiology, vol. 211, no. 6–8, pp. 549–556, 2006.
7. S. Sherman, J. J. Rohwedder, K. P. Ravikrishnan, and J. G. Weg, “Tuberculous enteritis and peritonitis. Report of 36 generalhospital cases,” Archives of Internal Medicine, vol. 140, no. 4, pp.506–508, 1980.
8. C. N. Horvath, C. R. Shaler, M. Jeyanathan, A. Zganiacz, and Z. Xing, “Mechanisms of delayed anti-tuberculosis protection inthe lung of parenteral BCG-vaccinated hosts: a critical role ofairway luminal T cells,” Mucosal Immunology, vol. 5, no. 4, pp.420–431, 2012.
9. A. M. Cooper, “Cell-mediated immune responses in tuberculosis,” Annual Review of Immunology, vol. 27, pp. 393–422, 2009.
10. Alldredge BK and Corell RL: Kodakimble and Young’s Applied therapeutics The Clinical Use of Drugs. Lippincott Williams and Wilkins, a Wolters Kluwer Business, Philadelphia, edition 10th, 2013: 1534-1555.
11. J. M. Grange and A. Zumla, “The global emergency of tuberculosis: what is the cause?” The Journal of the Royal Society for the Promotion of Health, vol.122, no.2, pp.78–81,2002.
12. D. Bhowmik, R. M. Chiranjib, B. Jayakar, and K. P. S. Kumar, “Recent trends of drug used treatment of tuberculosis,” Journal of Chemical and Pharmaceutical Research, vol. 1, no. 1, pp. 113133, 2009.
13. U. G. Lalloo and A. Ambaram, “New antituberculous drugs in development,” Current HIV/AIDS Reports, vol.7, no.3, pp.143151, 2010.
14. B. N. V. Hari, K. P. Chitra, R. Bhimavarapu, P. Karunakaran, N. Muthukrishnan, and B. S. Rani, “Novel technologies: a weapon against tuberculosis,” Indian Journal of Pharmacology, vol.42, no. 6, pp. 338–344, 2010.
15. M.A. Moretton, R.J. Glisoni, D.A. Chiappetta, and A. Sosnik, “Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles,” Colloidsand Surfaces B: Biointerfaces, vol.79, no.2, pp. 467–479, 2010.
16. A. Sosnik, ´A. M. Carcaboso, R. J. Glisoni, M. A. Moretton, and D. A. Chiappetta, “New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery,” Advanced Drug Delivery Reviews, vol.62, no.4-5, pp.547–559,2010.
17. ] G. Gregoriadis, C. P. Swain, E. J. Wills, and A. S. Tavill, “Drug carrier potential of liposomes in cancer chemotherapy,” The Lancet, vol.303, no.7870, pp.1313–1316,1974.
18. G. K. Khuller, M. Kapur, and S. Sharma, “Liposome technology for drug delivery against mycobacterial infections,” Current Pharmaceutical Design, vol. 10, no. 26, pp. 3263–3274, 2004.
19. L.Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer and O.C. Farokhzad, “Nanoparticlesinmedicine: the rapeuticapplications and developments,” Clinical Pharmacology and Therapeutics, vol.83, no.5, pp.761–769, 2008.
20. M. E. Davis, Z. G. Chen, and D. M. Shin, “Nanoparticle therapeutics: an emerging treatment modality for cancer,” Nature Reviews Drug Discovery, vol.7, no.9, pp.771–782,2008.
21. S. P. Klemens, M. H. Cynamon, C. E. Swenson, and R. S. Ginsberg, “Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice,” Antimicrobial Agents and Chemotherapy, vol. 34, no. 6, pp. 967–970, 1990.
22. S. Leitzke, W. Bucke, K. Borner, R. M¨uller, H. Hahn, and S. Ehlers, “Rationale for and efficacy of prolonged-interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 2, pp. 459–461, 1998.
23. N. D¨uzg¨unes¸, D. Flasher, M. V. Reddy, J. Luna-Herrera, and P. R. J. Gangadharam, “Treatment of intracellular Mycobacterium avium complex infection by free and liposome-encapsulated sparfloxacin,” Antimicrobial Agents and Chemotherapy, vol.40, no. 11, pp. 2618–2621, 1996.
24. I. I. Salem, D. L. Flasher, and N. D¨uzg¨unes¸, “Liposome-encapsulated antibiotics,” Methods in Enzymology, vol.391, pp.261291, 2005.
25. P. Deol, G.K. Khuller, and K. Joshi, “Therapeuticefficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 6, pp. 1211–1214, 1997.
26. P. Deol and G. K. Khuller, “Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice,” Biochimica et Biophysica Acta, vol.1334, no.2-3, pp.161–172,1997.
27. R. Pandey, S. Sharma, and G.K. Khuller, “Liposome-basedantitubercular drug therapy in a guinea pig model of tuberculosis,” International Journal of Antimicrobial Agents, vol.23, no.4, pp. 414–415, 2004.
28. Bummer PM. Physical chemical considerations of lipid-based oral drug delivery--solid lipid nanoparticles. Crit Rev Ther Drug Carrier Syst, 2004; 21: 1-20.
29. Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticles-based antitubecular chemotherapy. Tuberculosis, 2005; 85: 415-420.
30. Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylateddendrimers. J Drug Target, 2006; 14: 546-556.
31. Kumar PV, Agashe H, Dutta T, Jain NK. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv, 2007; 4: 1119.
32. Jiang W, Kim BY, Rutka JT, Chan WC. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv, 2007; 4: 621-633.
33. Silva M, Lara AS, LeiteCQF, Ferreira EI. Potential tuberculostatic agents: micelle-forming copolymer poly (ethylene glycol)-poly (aspartic acid) prodrug with isoniazid. Arch. Pharm. Pharm. Med. Chem., 2001; 334: 189-193.
34. Silva M, Ferreira EI, LeiteCQF, Sato DN. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Tropical Journal of Pharmaceutical Research, 2007; 6: 815-824.
35. Silva M, Ricelli NL, El Seoud O, Valentim CS, Ferreira AG, Sato DN, LeiteCQF, Ferreira EI. Potential tuberculostatic agent: micelle-forming pyrazinamide prodrug. Arch. Pharm. Chem. Life Sci., 2006; 339: 283-290.
36. Jin Y, Chen S, Xin R, Zhou Y. Monolayers of the lipid derivatives of isoniazid at the air/water interface and the formation of self-assembled nanostructures in water. Colloids Surf., B Biointerfaces, 2008; 64: 229-235.
37. Moretton MA, Glisoni RJ, ChiappettaDA, Sosnik A. Synthesis and characterization of amphiphilic poly/epsilon-caprolactone)-poly(ethyleneglycol) block copolymers, optimization of the solubility and stability of rifampicin bymeans of encapsulation. in into polymeric micelles, BIOOMAT 2009, I Workshop on Artificial Organs, Biomaterials and Tissue EngineeringLatin American Society of Biomaterials, Tissue Engineering and Artificial Organs (SLABO). 2009. Rosario, Argentina.
38. Chen L, Xie Z, Hu J, Chen X, Jing X. Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery. Journal of Nanoparticle Research, 2007; 9: 777-785.
39. Wu Y, Li M, Gao H. Polymeric micelle composed of PLA and chitosan as a drug carrier. Journal of Polymer Research, 2009; 16: 11-18.
40. ChimoteG, Banerjee R. Effect of antitubercular drugs on dipalmitoyl phosphatidylcholine monolayers: implication for drug loaded surfactants. Respiration Physiology and Neurobiology, 2005; 145: 65-77.
41. ChimoteG, Banerjee R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. Journal of Biomedical Materials Research Part A, 2009; 89: 281-292.
42. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, KharRK, Ali M. Development and bioavailability assessment of ramiprilnanoemulsion formulation. Eur J Pharm Biopharm, 2007; 66: 227-243.
43. ShafiqS, Shakeel F. Effect of Labrasol on selfnanoemulsification efficiency of ramiprilnanoemulsion. Pharmazie, 2009; 64: 812-817.
44. Ahmed M, Ramadan W, RambhuD, Shakeel F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie, 2008; 63: 806811.
45. Mehta SK, Kaur G, Bhasin KK. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: effect on microstructure and physical parameters. Pharm Res, 2008; 25: 227-236.
46.   Mehta SK, Kaur G, Bhasin KK. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs. AAPS PharmSciTech, 2010; 11: 143-153.

Recomonded Articles:

Author(s): Hiral A. Makadia, Ami Y. Bhatt, Ramesh B. Parmar, Ms. Jalpa S. Paun, H.M. Tank

DOI:         Access: Open Access Read More

Author(s): Prajapati M., Mandloi R., Pillai S, Birla N.

DOI: 10.5958/2231-5691.2020.00021.0         Access: Closed Access Read More

Author(s): Sheetal B. Gondkar, Shalaka P. Rasal, Ravindra B. Saudagar

DOI: 10.5958/2231-5691.2016.00027.7         Access: Open Access Read More

Author(s): Niyaz Kavugoli, Ravikumar, Narayanaswamy VB

DOI: 10.5958/2231-5691.2016.00018.6         Access: Open Access Read More

Author(s): Sarin.a. Chavhan, Sushilkumar. A. Shinde, Sandip. B. Sapkal , Vinayak N. Shrikhande

DOI: 10.5958/2231-5691.2017.00019.3         Access: Open Access Read More

Author(s): Akhil Gupta, Anuj Mittal , Alok Kumar Gupta

DOI:         Access: Open Access Read More

Author(s): Lalita Balasaheb Patil, Swapnil S. Patil, Manoj M. Nitalikar, Chandrakant S. Magdum, Shrinivas K. Mohite

DOI: 10.5958/2231-5691.2016.00030.7         Access: Open Access Read More

Author(s): Vidya Dange , Shubhangi Shid, C.S. Magdum ,S.K. Mohite, M.M. Nitalikar

DOI: 10.5958/2231-5691.2015.00032.5         Access: Open Access Read More

Author(s): Bijay Kumar Sahoo, Sidheswar Prasad Pattajoshi, Sandhyarani Pattajoshi

DOI: 10.5958/2231-5691.2018.00011.4         Access: Open Access Read More

Author(s): Mohd. Yaqub Khan, Maryada Roy, Raj Kumar Rawal, Umesh Kumar Bansal

DOI: 10.5958/2231-5691.2017.00007.7         Access: Open Access Read More

Author(s): Samir K. Shah, Kruti M. Patel, Pinal M. Vaviya

DOI: 10.5958/2231-5691.2017.00014.4         Access: Open Access Read More

Author(s): Kaustubh V. Gavali, Manohar D. Kengar, Kiran V. Chavan, Vaishnavi P. Anekar, Naziya I. Khan

DOI: 10.5958/2231-5691.2019.00020.0         Access: Closed Access Read More

Author(s): Indrajeet S. Patil, Omkar A. Patil, Girish Chandra R. Mandake, Manoj M. Nitalikar

DOI: 10.5958/2231-5691.2018.00035.7         Access: Closed Access Read More

Author(s): P. K. Wagh, S. P. Ahirrao, S. J. Kshirsagar

DOI: 10.5958/2231-5691.2019.00013.3         Access: Closed Access Read More

Author(s): Ashok Thulluru, Nawaz Mahammed, C. Madhavi, K. Nandini, S. Sirisha, D. Spandana

DOI: 10.5958/2231-5691.2019.00016.9         Access: Closed Access Read More

Author(s): Sarika V. Khandbahale

DOI: 10.5958/2231-5691.2019.00021.2         Access: Closed Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 


Recent Articles




Tags