Author(s):
Afsana Amin Shorna, Farhana Rahman, Md. Shakil Ahmed, Rabeya Basri, Mahbuba Haque, Tania Khan, Most. Arzu Banu, Md. Atiqur Rahman
Email(s):
atiqur.r@uoda.edu.bd
DOI:
10.52711/2231-5691.2024.00056
Address:
Afsana Amin Shorna1, Farhana Rahman1, Md. Shakil Ahmed1, Rabeya Basri1, Mahbuba Haque1, Tania Khan1, Most. Arzu Banu2, Md. Atiqur Rahman1,3*
1Department of Pharmacy, University of Development Alternative (UODA), Dhanmondi, Dhaka 1209, Bangladesh.
2Department of Biotechnology and Genetic Engineering,
University of Development Alternative (UODA), Dhanmondi, Dhaka1209, Bangladesh.
3Professor, Department of Pharmacy, University of Development Alternative (UODA), Dhanmondi, Dhaka1209, Bangladesh.
*Corresponding Author
Published In:
Volume - 14,
Issue - 4,
Year - 2024
ABSTRACT:
Monkeypox, a viral infection caused by the Monkeypox virus (MPXV), poses a significant public health threat. To identify potential antiviral metabolites against MPXV, we focused on the monkeypox profilin-like protein, crucial for viral replication. Twenty metabolites from various classes were retrieved from PubChem for molecular dynamics simulations. The top three molecules—Melongoside N, CID-4483043, Avenacosid A, CID-267363, and Melongoside P, CID- 131750951 demonstrated the best binding affinity for Profilin-like Protein A42R (PDB-4QWO). These ligands displayed stable interactions and minimal structural fluctuations during simulations, as indicated by favorable RMSD, RMSF, Rg, SASA, MolSA, and PSA results. The ligands maintained acceptable conformational stability with RMSD values within 1–3 Å, showing minimal structural changes. The ligands exhibited stable interactions with specific protein residues, indicating consistent and limited local alterations in the protein structure. Throughout a 250 ns simulation, the ligands maintained the protein's compactness, with average Rg values suggesting no major structural changes. Ligand complexes displayed typical van der Waals surface areas and polar interactions, supporting their stable interaction with the target protein. These ligands show promise as antiviral agents against monkeypox, with in-silico findings providing valuable insights for drug design. However, further experimental validation is crucial to advancing these ligands toward tangible antiviral therapeutics. This study contributes vital information to the computational drug discovery field, emphasizing interdisciplinary approaches for effective viral infection control.
Cite this article:
Afsana Amin Shorna, Farhana Rahman, Md. Shakil Ahmed, Rabeya Basri, Mahbuba Haque, Tania Khan, Most. Arzu Banu, Md. Atiqur Rahman. Computational Approaches in Targeting Monkeypox Virus: A Focus on Phytochemical Inhibition of Profilin-like Protein A42R. Asian Journal of Pharmaceutical Research.2024; 14(4):355-2. doi: 10.52711/2231-5691.2024.00056
Cite(Electronic):
Afsana Amin Shorna, Farhana Rahman, Md. Shakil Ahmed, Rabeya Basri, Mahbuba Haque, Tania Khan, Most. Arzu Banu, Md. Atiqur Rahman. Computational Approaches in Targeting Monkeypox Virus: A Focus on Phytochemical Inhibition of Profilin-like Protein A42R. Asian Journal of Pharmaceutical Research.2024; 14(4):355-2. doi: 10.52711/2231-5691.2024.00056 Available on: https://asianjpr.com/AbstractView.aspx?PID=2024-14-4-2
REFERENCES:
1. Petersen E. Kantele A. Koopmans M. Asogun D. Yinka-Ogunleye A. Ihekweazu C. Zumla A. Infect. Dis. Clin. North Am. 2019; 33(4): 1027–1043. https://doi.org/10.1016/j.idc.2019.03.001
2. Parker S. Buller RM. Future Virol. 2013; 8(2): 129–157. https://doi.org/10.2217/fvl.12.130
3. Durski KN. McCollum AM. Nakazawa Y. Petersen BW. Reynolds MG. Briand S. Djingarey MH. Olson V. Damon IK. Khalakdina A. MMWR Morb. Mortal. Wkly Rep. 2018; 67(10): 306–310. https://doi.org/10.15585/mmwr.mm6710a5
4. Sharma N. Sharma S., Bala M. Rana R. Sharma N. A Comprehensive Review on the Transmission, Pathogenesis, and Prevention of Monkey Pox. Research Journal of Pharmacology and Pharmacodynamics. 2024; 16(1):6-4. doi: 10.52711/2321-5836.2024.00002
5. Bunge EM. Hoet B. Chen L. Lienert F. Weidenthaler H. Baer LR. Steffen R. PLoS Negl. Trop. Dis. 2022; 16(2): e0010141. https://doi.org/10.1371/journal.pntd.0010141
6. Khankari RV. Umale SM. Patil AS. Thanekar TR. A Review on Human Monkeypox Virus. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(1): 56-2. doi: 10.52711/2231-5659.2023.00010
7. Khamees A. Awadi S. Al-Shami K. et al Human monkeypox virus in the shadow of the COVID-19 pandemic. J Infect Public Health. 2023; 16(8): 1149–1157. https://doi.org/doi: 10.1016/j.jiph.2023.05.013
8. Humayun F. Khan F. Khan A. et al De novo generation of dual-target ligands for the treatment of SARS-CoV-2 using deep learning, virtual screening, and molecular dynamic simulations. J Biomol Struct Dyn. 2024; 42(6): 3019-3029. https://doi.org/ 10.1080/07391102.2023.2234481
9. Wang Z. Li L. Song M. et al Evaluating the Traditional Chinese Medicine (TCM) officially recommended in China for COVID-19 using ontology-based side-effect prediction framework (OSPF) and deep learning. J Ethnopharmacol. 2021; 272: 113957. https://doi.org/10.1016/j.jep.2021.113957
10. Yao Y. Wang Z. Li L. et al An ontology-based artificial intelligence model for medicine side-effect prediction: taking Traditional Chinese Medicine as an example. Comput Math Methods Med. 2019; 2019: 8617503. https://doi.org/10.1155/2019/ 8617503
11. Brogi S. Ramalho TC. Kuca K. et al Editorial: in silico methods for drug design and discovery. Front Chem. 2020; 8: 612. https://doi.org/10.3389/fchem.2020.00612
12. Peng Q. Xie Y. Kuai L. et al Structure of monkeypox virus DNA polymerase holoenzyme. Science. 2023; 6: 379: 100–105. https://doi.org/10.1126/science.ade6360
13. Minasov G. Inniss NL. Shuvalova L. et al Structure of the Monkeypox virus profilin-like protein A42R reveals potential functional differences from cellular profilins. Acta Crystallogr F Struct Biol Commun. 2022; 78(Pt-10): 371–777. https://doi.org/ 10.1107/s2053230x22009128
14. Van Vliet K. Mohamed MR. Zhang L. Villa NY. Werden, SJ. Liu J. McFadden G. Microbiol. Mol. Biol. Rev. 2009; 73(4): 730-749. https://doi.org/10.1128%2FMMBR.00026-09
15. Witke W. Trends Cell Biol. 2004; 14(8): 461-469. https://doi.org/10.1016/j.tcb.2004.07.003
16. Krishnan K. Moens PDJ. Biophys. Rev. 2009; 1(2): 71–81. https://doi.org/10.1007%2Fs12551-009-0010-y
17. Davey RJ. Moens PD. Biophys. Rev. 2020; 12(4): 827–849. https://doi.org/10.1007%2Fs12551-020-00723-3
18. Giorgi FM. Pozzobon D. Di Meglio A. Mercatelli D. Genomic characterization of the recent monkeypox outbreak. 2023; 12: 286. https://doi.org/10.1101/2022.06.01.494368
19. Taylor MP. Koyuncu OO. Enquist LW. Subversion of the actin cytoskeleton during viral infection. Nature Reviews Microbiology, 2011; 9: 427–439, View at: Publisher Site
20. Mösbauer K. Fritsch VN. Adrian L. et al The effect of allicin on the proteome of SARS-CoV-2 infected Calu-3 Cells, Frontiers in Microbiology, 2021; 12: 746795 https://doi.org/10.3389/ fmicb.2021.746795
21. Kim S. Thiessen PA. Bolton EE. et al PubChem substance and compound databases, Nucleic Acids Research, 2016; 44(D1):, D1202-D1213. https://doi.org/10.1093/nar/gkv951
22. RCSB Protein Data Bank. https://www.rcsb.org, accessed on 03.11.2023.
23. Linyang L. Chengchen X, Yinling G, Haozhong W. Screening potential treatments for mpox from Traditional Chinese Medicine by using a datadriven approach Medicine. 2023; 102(37): e35116. https://doi.org/10.1097/md.0000000000035116
24. PubChem database. https://pubchem.ncbi.nlm.nih.gov, accessed on 03.14.2023.
25. Trott O. Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-61. https://doi.org/10.1002/jcc.21334
26. Raj AA. Vinnarasi J. Natural Potential Inhibitors for Covid 19 – An Insilico Approach. Research Journal of Pharmacy and Technology. 2021; 14(9): 4913-9. doi: 10.52711/0974-360X.2021.00854
27. Vivek BP. Santosh RB. Parag GI. Synthesis, characterization and molecular docking studies on some new N-substituted 2-phenylpyrido[2,3-d] pyrimidine derivatives. Research Journal of Pharmacy and Technology. 2021; 14(7): 3846-4. doi: 10.52711/ 0974-360X.2021.00667
28. Huang K. Liu Y. Wen S. Zhao Y. Ding H. Liu H. Kong DX. Binding Mechanism of CD47 with SIRPα Variants and Its Antibody: Elucidated by Molecular Dynamics Simulations. Molecules. 2023; 28(12): 4610. https://doi.org/10.3390/ molecules28124610
29. Kun Z. Bo L. Molecular Dynamic Simulation: Fundamentals and Applications explains the basic principles of MD simulation and explores its recent developments and roles in advanced modeling approaches. 2022; 67-96. https://doi.org/10.1016/ B978-0-12-816419-8.00008-8.
30. Naqvi AAT. Mohammad T. Hasan GM. Hassan MI. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships. Curr Top Med Chem. 2018; 18(20): 1755-1768. https://doi.org/10.2174/1568026618666181025114157
31. Rollando R. Warsito W. Masruri M. Nashi W. Potential matrix metalloproteinase-9 inhibitor of aurone compound isolated from Sterculia quadrifida leaves: In-vitro and in-silico studies. Research Journal of Pharmacy and Technology. 2022; 15(11): 5250-4. doi: 10.52711/0974-360X.2022.00884
32. Sapundzhi, F., Popstoilov, M., Lazarova, M. RMSD Calculations for Comparing Protein Three-Dimensional Structures. In: Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. 2023: NMA 2022. Lecture Notes in Computer Science, vol 13858. Springer, Cham. https://doi.org/10.1007/978-3-031-32412-3_25
33. Duran T. Minatovicz B. Bai J. Shin D. Mohammadiarani H. Chaudhuri B. Molecular Dynamics Simulation to Uncover the Mechanisms of Protein Instability During Freezing. Journal of Pharmaceutical Sciences. 2021; 110. 10.1016/j.xphs.2021.01.002. http://dx.doi.org/10.1016/j.xphs.2021.01.002
34. Lobanov M. Bogatyreva NS. Galzitskaia OV. Radius of gyration is indicator of compactness of protein structure. Mol Biol (Mosk). 2008; 42(4): 701-6. PMID: 1885607129
35. Vishwajit SP. Prithviraj AP. Molecular Docking: A useful approach of Drug Discovery on the Basis of their Structure. Asian Journal of Pharmaceutical Research. 2023; 13(3): 191-5. doi: 10.52711/2231-5691.2023.00036
36. Anjali P. Vimalavathini R. In-silico Molecular Docking of Coumarin and Naphthalene Derivatives from Pyrenacantha volubilis with the Pathological Mediators of Rheumatoid Arthritis. Research Journal of Pharmacy and Technology. 2021; 14(10): 5121-5. doi: 10.52711/0974-360X.2021.00892
37. Asish Bhaumik, Samaresh Datta, Susmita Datta, Radheshyam Samanta, B. D. Tripathi. Extraction and Isolation of Phenolic compounds from Sweet lime and Evaluation of Anticancer potentiality followed by Molecular docking against Topoisomerase II. Research Journal of Pharmacy and Technology. 2021; 14(11): 5993-7. doi: 10.52711/0974-360X.2021.01041
38. Biswas P. Hany Rumi O. Ahmed Khan D. Ahmed MN. Nahar N. Jahan R. et al Evaluation of Melongosides as Potential Inhibitors of NS2B-NS3 Activator-Protease of Dengue Virus (Serotype 2) by Using Molecular Docking and Dynamics Simulation Approach, Journal of Tropical Medicine. 2022; 7111786. https://doi.org/10.1155/2022/7111786
39. Ravindra G. Sanket R. Anilkumar S. In-silico Study of Phytoconstituents from Tribulus terrestris as potential Anti-psoriatic agent. Asian Journal of Pharmaceutical Research. 2022; 12(4): 267-4. doi: 10.52711/2231-5691.2022.00043
40. Subasri S. Viswanathan V. Kesharwani M. & Velmurugan D. Phytochemical analysis, molecular docking and molecular dynamics simulations of selected phytoconstituents from four herbs as anti-dotes for snake bites, Clinical Proteomics & Bioinformatics. 2016; 1(3): 1-13. http://dx.doi.org/10.15761/ CPB.1000117
41. Padmini R. Sitrarasi R. Razia M. Molecular Docking Studies of Bioactive Compounds from Allium sativum Against EML4-ALK Receptor. Research J. Pharm. and Tech. 2017; 10(11): 3741-3747. doi: 10.5958/0974-360X.2017.00679.5