Author(s): Shivani Sharma, Navdeep Singh, Amar Deep Ankalgi, Arti Rana, Mahendra Singh Ashawat


DOI: 10.52711/2231-5691.2021.00035   

Address: Shivani Sharma*, Navdeep Singh, Amar Deep Ankalgi, Arti Rana, Mahendra Singh Ashawat
Laureate Institute of Pharmacy, Kathog, Jawalamukhi, Himachal Pradesh 176031, India.
*Corresponding Author

Published In:   Volume - 11,      Issue - 3,     Year - 2021

Liquid chromatography mass spectrometry is a powerful technique which is used for the new product development, manufacturing, and to the control the stability or drug abuse. These techniques were commonly preferred in pharmacokinetics studies in pharmaceutical products. The principle involved in the LC-MS technique was justified in our study to understand the basic fundamentals of LC-MS. Also, it is used in combination with HPLC for chemical analysis. Many applications and the future prospects have been highlighted regarding the use for LC-MS in analytical chemistry. It is basically depends on the metabolites which are collected in this technique, furthermore the chemicals are analyzed according to the nature of suitability of LC-MS. This technique was helpful in the analysis of protein components identified in terms of pharmacovigilance, organic/inorganic hybrid nanoflowering. Also, our study highlights the techniques involved in proteomics. In LC-MS-based proteomics, complex mixtures of proteins are first subjected to enzymatic cleavage, then the resulting peptide products are analyzed using a mass spectrometer; this is in contrast to "top-down" proteomics, which deals with intact proteins and is limited to single protein mixtures. So, this review aims to highlight the basic introduction, and principle involved in liquid chromatography-mass spectrometry (LC-MS). Also, the advantages, or application of LC-MS were studied. Most importantly the LC-MS based proteomics, and the future aspects of LC-MS technology were studied in this review.

Cite this article:
Shivani Sharma, Navdeep Singh, Amar Deep Ankalgi, Arti Rana, Mahendra Singh Ashawat. A Laconic Review on Liquid Chromatography Mass Spectrometry (LC-MS) Based Proteomics Technology in Drug Discovery. Asian Journal of Pharmaceutical Research. 2021; 11(3):194-1. doi: 10.52711/2231-5691.2021.00035

Shivani Sharma, Navdeep Singh, Amar Deep Ankalgi, Arti Rana, Mahendra Singh Ashawat. A Laconic Review on Liquid Chromatography Mass Spectrometry (LC-MS) Based Proteomics Technology in Drug Discovery. Asian Journal of Pharmaceutical Research. 2021; 11(3):194-1. doi: 10.52711/2231-5691.2021.00035   Available on:

1.    Arpino P. Combined liquid chromatography mass spectrometry. Part I. Coupling by means of a moving belt interface. Mass spectrometry reviews. 1989;8(1):35-55.
2.    Murray KK. Coupling matrix assisted laser desorption/ionization to liquid separations. Mass Spectrometry Reviews. 1997;(5):283-99.
3.    Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. The Clinical Biochemist Reviews. 2009;30(1):19.
4.    Kumar PR, Dinesh SR, Rini R. LCMS—a review and a recent update. J Pharm Pharm Sci. 2016;5: 377-91.
5.    Chang-Ming HE, Cheng ZH, Dao-Feng CH. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC. Chinese Journal of Natural Medicines. 2013;11(6): 690-8.
6.    Wu SW, Pu TH, Viner R, Khoo KH. Novel LC-MS2 product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Analytical Chemistry. 2014;86(11): 5478-86.
7.    Shah RP, Sahu A, Singh S. Identification and characterization of degradation products of irbesartan using LC–MS/TOF, MSn, on-line H/D exchange and LC–NMR. Journal of Pharmaceutical and Biomedical Analysis. 2010;51(5): 1037-46.
8.    Devanshu S, Rahul M, Annu G, Kishan S, Anroop N. Quantitative bioanalysis by LC-MS/MS: a review. Journal of Pharmaceutical and Biomedical Sciences. 2010; 7(7).
9.    Sommer U, Herscovitz H, Welty FK, Costello CE. LC-MS-based method for the qualitative and quantitative analysis of complex lipid mixtures. Journal of Lipid Research. 2006;47(4): 804-14.
10.    Oksman-Caldentey KM, Inzé D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science. 2004; 9(9): 433-40.
11.    Brandhorst G, Oellerich M, Maine G, Taylor P, Veen G, Wallemacq P. Liquid chromatography–tandem mass spectrometry or automated immunoassays: what are the future trends in therapeutic drug monitoring?. Clinical Chemistry. 2012; 58(5): 821-5.
12.    Metz TO, Zhang Q, Page JS, Shen Y, Callister SJ, Jacobs JM, Smith RD. Future of liquid chromatography–mass spectrometry in metabolic profiling and metabolomic studies for biomarker discovery.
13.    Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metabolism Reviews. 2007; 39(2-3): 581-97.
14.    Chen G, Pramanik BN. Application of LC/MS to proteomics studies: current status and future prospects. Drug Discovery today. 2009; 14(9-10): 465-71.
15.    Lee SW, Cheon SA, Kim MI, Park TJ. Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. Journal of Nanobiotechnology. 2015; 13(1): 1-0.
16.    Berth M, Moser FM, Kolbe M, Bernhardt J. The state of the art in the analysis of two-dimensional gel electrophoresis images. Applied microbiology and Biotechnology. 2007; 76(6): 1223-43.
17.    Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry. 1997; 69(23): 4751-60.
18.    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature. 2003; 425(6959): 737-41.
19.    Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry. 1994; 5(11): 976-89.
20.    Finney GL, Blackler AR, Hoopmann MR, Canterbury JD, Wu CC, MacCoss MJ. Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution μLC− MS data. Analytical Chemistry. 2008; 80(4): 961-71.
21.    Laskin J, Futrell JH. Collisional activation of peptide ions in FT‐ICR mass spectrometry. Mass Spectrometry Reviews. 2003; 22(3): 158-81.
22.    Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry. 2002; 74(20): 5383-92.
23.    Käll L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. Journal of Proteome Research. 2008; 7(01): 29-34.
24.    Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B. Computational prediction of proteotypic peptides for quantitative proteomics. Nature Biotechnology. 2007; 25(1): 125-31.
25.    Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnology. 1999; 17(7): 676-82.
26.    Nesvizhskii AI. Protein identification by tandem mass spectrometry and sequence database searching. Mass Spectrometry Data Analysis in Proteomics. 2007: 87-119.
27.    Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. Journal of proteome Research. 2009; 8(5): 2144-56.
28.    Nesvizhskii AI, Aebersold R. Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. Drug Discovery Today. 2004; 9(4): 173-81.
29.    Paša-Tolić L, Masselon C, Barry RC, Shen Y, Smith RD. Proteomic analyses using an accurate mass and time tag strategy. Biotechniques. 2004; 37(4): 621-39.
30.    Schnölzer M, Jedrzejewski P, Lehmann WD. Protease‐catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix assisted laser desorption/ionization mass spectrometry. Electrophoresis. 1996; 17(5): 945-53.
31.    Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Molecular Cancer. 2007; 6(1): 1-3.
32.    McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Analytical Chemistry. 1997; 69(4): 767-76.
33.    Cho WC, Cheng CH. Oncoproteomics: current trends and future perspectives. Expert review of proteomics. 2007; 4(3): 401-10.
34.    Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP. Mass spectrometry compatibility of two‐dimensional gel protein stains. Electrophoresis. 2001; 22(5): 906-18.
35.    Chen G, Pramanik BN, Liu YH, Mirza UA. Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery. Journal of Mass Spectrometry. 2007; 42(3): 279-87.
36.    Singh N, Goyal K, Sondhi S, Jindal S. Development and Characterization of Barbaloin Gel for the Safe and Effective Treatment of Psoriasis. Journal of Drug Delivery and Therapeutics. 2020; 10(5): 188-97.
37.    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology. 1999; 17(10): 994-9.
38.    Zieske LR. A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. Journal of Experimental Botany. 2006; 57(7): 1501-8.
39.    Smith SA, Blake TA, Ifa DR, Cooks RG, Ouyang Z. Dual-source mass spectrometer with MALDI-LIT-ESI configuration. Journal of Proteome Research. 2007; 6(2): 837-45.
40.    Andersson T, Johansson M, Bolmsjö G, James P. Automating MALDI sample plate loading. Journal of Proteome Research. 2007; 6(2): 894-6.
41.    Singh N, Goyal K, Sondhi S, Jindal S. Traditional and medicinal use of Barbaloin: potential for the management of various diseases. Journal of Applied Pharmaceutical Research. 2020; 8(3): 21-30.
42.    Cho WC. Research progress in SELDI-TOF MS and its clinical applications. Chinese Journal of Biotechnology. 2006;22(6):871-7.
43.    Chignard N, Beretta L. Proteomics for hepatocellular carcinoma marker discovery. Gastroenterology. 2004; 127(5): S120-5.
44.    Turkina MV, Vener AV. Identification of phosphorylated proteins. InPlant Proteomics 2007 (pp. 305-316). Humana Press.
45.    Singh N, Sondhi S, Jindal S, Pandit V, Ashawat MS. Treatment and Management for patients with mild to severe Psoriasis: A Review. Asian Journal of Pharmaceutical Research. 2020; 10(4): 286-92.
46.    Geuijen CA, Bijl N, Smit RC, Cox F, Throsby M, Visser TJ, Jongeneelen MA, Bakker AB, Kruisbeek AM, Goudsmit J, de Kruif J. A proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry. European Journal of Cancer. 2005; 41(1): 178-87.
47.    Gulmann C, Sheehan KM, Kay EW, Liotta LA, Petricoin III EF. Array‐based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2006; 208(5): 595-606.
48.    Lee MS, Kerns EH. LC/MS applications in drug development. Mass spectrometry reviews. 1999; 18(3-4): 187-279.
49.    America AH, Cordewener JH. Comparative LC-MS: A landscape of peaks and valleys. Proteomics. 2008; 8(4): 731-49.
50.    Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany. 2005; 56(410): 219-43.

Recomonded Articles:

Author(s): Habeeb Ahmed, Mohammed Ehtesham, Nuha Rasheed , Abdul Saleem Mohammad

DOI: 10.5958/2231-5691.2017.00006.5         Access: Open Access Read More

Author(s): R. R. Shah, S. A. Mohite, N. R. Patel

DOI: 10.5958/2231-5691.2018.00007.2         Access: Open Access Read More

Author(s): AK Meena, MM Rao, RP Meena, P Panda, Renu

DOI:         Access: Open Access Read More

Author(s): D. Sunitha, K. Hemalatha, M. Sudhakar

DOI: 10.5958/2231-5691.2016.00029.0         Access: Open Access Read More

Author(s): S.C. Shivhare, U.D.Shivhare, Preeti Srivastav, K.G. Malviya

DOI:         Access: Open Access Read More

Author(s): Neha Meshram, Mithlesh Ojha, Ajay Singh, Amit Alexander, Ajazuddin, Mukesh Sharma

DOI: 10.5958/2231-5691.2015.00009.X         Access: Open Access Read More

Author(s): Nikita R. Nikam, Rohan R. Vakhariya, Dr. C. S. Magdum

DOI: 10.5958/2231-5691.2019.00018.2         Access: Open Access Read More

Author(s): B.A. Bhairav, J.K. Bachhav, R.B. Saudagar

DOI: 10.5958/2231-5691.2016.00025.3         Access: Open Access Read More

Author(s): Sandesh Narayan Somnache, Ajeet Madhukar Godbole, Pankaj Sadashiv Gajare, Sapna Kashyap

DOI: 10.5958/2231-5691.2016.00028.9         Access: Open Access Read More

Author(s): Rutuja S. Shah, Rutuja R. Shah, Manoj M. Nitalikar, Chandrakant S. Magdum

DOI: 10.5958/2231-5691.2017.00024.7         Access: Open Access Read More

Author(s): Subhashis Debnath, C. Navya Yadav, N. Nowjiya, M. Prabhavathi, A. SaiKumar, P. Sai Krishna, M. Niranjan Babu

DOI: 10.5958/2231-5691.2019.00009.1         Access: Open Access Read More

Author(s): Manohar D. Kengar, Kiran K. Patole, Akshay K. Ade, Sumesh M. Kumbhar, Chetan D. Patil, Ashutosh R. Ganjave

DOI: 10.5958/2231-5691.2019.00019.4         Access: Open Access Read More

Author(s): Ashok B. Patel, Ashish H. Asnani, Amitkumar J. Vyas, Nilesh K. Patel, Ajay I. Patel, Arvind N. Lumbhani

DOI: 10.52711/2231-5691.2021.00034         Access: Open Access Read More

Author(s): Rina G. Maskare, Ayush P. Agrawal, Mayuri S. Pal, Jidnyasa R. Yerne, Megham Chaudhri, Anup R. Bawankar, Gaytri B. Sonkusre

DOI: 10.52711/2231-5691.2022.00025         Access: Open Access Read More

Author(s): Vidya Raju*, Jasmine Joy Bell, Merlin. N. J, Shaiju S Dharan

DOI: 10.5958/2231-5691.2017.00037.5         Access: Open Access Read More

Author(s): Sahil Hasan, Saloni Bhandari, Anshu Sharma, Poonam Garg

DOI: 10.52711/2231-5691.2021.00047         Access: Open Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 

Recent Articles