Author(s): R. Santhosh Kumar

Email(s): santhosh@jssuni.edu.in

DOI: 10.5958/2231-5691.2021.00007.1   

Address: Dr. R. Santhosh Kumar
JSS College of Pharmacy, Rocklands, Ooty 643001.
*Corresponding Author

Published In:   Volume - 11,      Issue - 1,     Year - 2021


ABSTRACT:
Objective: This literature review aims to identify and investigate existing evidence about sodium-glucose co-transporter 2 (SGLT-2) inhibitors. Evidence acquisition: A literature search in PubMed and google scholar (January 1998 to April 2020) was done. Search terms like “(SGLT-2) inhibitors,” “pharmacokinetic,” “efficacy,” “cardiovascular safety,” and all the drug names of this class and its combination were included. Diabetes mellitus has been the silent killer of mankind, Metformin has been the reliable warrior for 62 years since its approval, and remains to be the first-line drug based on their beneficial effects. Conclusion: In 2015, the American Diabetes Association reported that data on microvascular and macrovascular results were unavailable for almost all the newer antidiabetic agents, which resulted in placing SGLT inhibitors as second- or third-line agents, Ever since, new evidence has emerged, notably for SGLT2 inhibitors, which have inspired and influenced physicians to reconsider their approach towards glucose reduction in type 2 diabetes. Hence a consolidated review on safety and efficacy of the drug is the need of the hour.


Cite this article:
R. Santhosh Kumar. SGLT-2 Inhibitors- Hope or Hype? - An updated Review. Asian J. Pharm. Res. 2021; 11(1):29-38. doi: 10.5958/2231-5691.2021.00007.1

Cite(Electronic):
R. Santhosh Kumar. SGLT-2 Inhibitors- Hope or Hype? - An updated Review. Asian J. Pharm. Res. 2021; 11(1):29-38. doi: 10.5958/2231-5691.2021.00007.1   Available on: https://asianjpr.com/AbstractView.aspx?PID=2021-11-1-7


REFERENCES:
1.    I.Figuerido, S. Cardoso, P. Rose et al., Use of sodium-glucose cotransporter-2 inhibitors and urinary tract infections in type 2 diabetes patients: a systematic review, 2019, 65(2), 246-252.
2.    Ojieabu WA, Bello SI, Arute JE. Evaluation of pharmacists’ educational and counselling impact on patients’ clinical outcomes in a diabetic setting. J Diabetol 2017; 8:7-11.
3.    Juan José Marín-Peñalver, et al., Update on the treatment of type 2 diabetes mellitus, World J Diabetes 2016 September 15; 7(17): 354-395.
4.    Binayak Sinha and Samit Ghosal, Pioglitazone—Do we really need it to manage type 2 diabetes?, Diabetes & Metabolic Syndrome: Clinical Research & Reviews 7 (2013) 52–55.
5.    Hampp C, Borders-Hemphill V, Moeny DG, Wysowski DK. Use of antidiabetic drugs in the U.S., 2003–2012. Diabetes Care 2014; 37:1367–1374
6.    Laurent Azoulay and Samy Suissa, Sulfonylureas and the Risks of Cardiovascular Events and Death: A Methodological Meta-Regression Analysis of the Observational Studies, Diabetes Care 2017; 40:706–714
7.    Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol 2014; 2:911-22.
8.    American Diabetes Association. Standards of medical care in diabetes: 2019. Diabetes Care 2019; 42(Suppl 1): S1-193.
9.    Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015; 38(1):140–149.
10.    Fonseca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes Care. 2009; 32(Suppl 2): S151–S156.
11.    Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpierrez GE. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm: 2018 executive summary. Endocr Pract 2018; 24:91-120.
12.    Bays H. From victim to ally: the kidney as an emerging target for the treatment of diabetes mellitus. Curr Med Res Opin. 2009; 25(3): 671–681.
13.    Ehrenkranz, R.R.L.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. DiabetesMetab. Res. Rev. 2005, 21, 31–38. [CrossRef]
14.    Stiles PG, Lusk G: On the action of phlorizin. Am J Physiol 1903; 10:61-79 Res. Rev. 2005, 21, 31–38.
15.    Vick H, Diedrich DF, Baumann K: Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am J Physiol 224:552-557, 1973
16.    Rossetti, L.; Smith, D.; Shulman, G.I.; Papachristou, D.; DeFronzo, R.A. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Investig. 1987, 79, 1510–1515. [CrossRef] [PubMed]
17.    Dimitrakoudis, D.; Vranic, M.; Klip, A. Effects of hyperglycemia on glucose transporters of the muscle: Use of the renal glucose reabsorption inhibitor phlorizin to control glycemia. J. Am. Soc. Nephrol. 1992, 3, 1078–1091. [PubMed]
18.    Jonas, J.C.; Sharma, A.; Hasenkamp, W.; Ilkova, H.; Patane, G.; Laybutt, R.; Bonner-Weir, S.; Weir, G.C. Chronic hyperglycemia triggers loss of pancreatic β cell differentiation in an animal model of diabetes. J. Biol. Chem. 1999, 274, 14112–14121. [CrossRef] [PubMed]
19.    Abdul-Ghani, M.A.; DeFronzo, R.A. Inhibition of renal glucose absorption: A novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr. Pract. 2008, 14, 782–790. [CrossRef] [PubMed]
20.    Turk E, Martin MG, Wright EM. Structure of the human Na+/glucose cotransporter gene SGLT1. J Biol Chem 1994; 269: 15 204–15 209.
21.    Mackenzie B, Panayotova-Heiermann M, Loo DDR, Lever JE, Wright EM. SAAT1 is a low affinity Na=/glucose transporter and not an amino acid transporter. A reappraisal. J Biol Chem 1994; 269: 22 488–22 491.
22.    Panayotova-Heiermann M, Loo DDR, Wright EM. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J Biol Chem 1995; 270: 27 099–27 105.
23.    Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. [CrossRef] [PubMed]
24.    Thorens, B.; Mueckler, M. Glucose transporters in the 21st century. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E141–E145. [CrossRef] [PubMed]
25.    Bays, H. Sodiumglucoseco transportertype2(SGLT2)inhibitors: Targeting the kidney to improve glycemic control in diabetes mellitus. Diabetes Ther. 2013, 4, 195–220. [CrossRef] [PubMed]
26.    Larson, G. L. The Synthesis of Gliflozins. Chem. Today 2015, 567 (1937), 635−642
27.    Satirapoj, B. Sodium-Glucose Cotransporter 2 Inhibitors with Renoprotective Effects. Kidney Dis. 2017, 3 (1), 24−32.
28.    Bokor, É.; Kun, S.; Goyard, D.; Tóth, M.; Praly, J.-P.; Vidal, S.; Somsák, L. C -Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem. Rev. 2017, 117, 1687−1764.
29.    Inzucchi, S. E.; Zinman, B.; Wanner, C.; Ferrari, R.; Fitchett, D.; Hantel, S.; Espadero, R.-M.; Woerle, H.-J.; Broedl, U. C.; Johansen, O. E. SGLT2 Inhibitors and Cardiovascular Risk: Proposed Pathways and Review of Ongoing Outcome Trials. Diabetes Vasc. Dis. Res. 2015, 12 (2), 90−100.
30.    Madaan, T.; Akhtar, M.; Najmi, A. K. Sodium Glucose Co Transporter 2 (SGLT2) Inhibitors: Current Status and Future Perspective. Eur. J. Pharm. Sci. 2016, 93, 244−252.
31.    Cai, W.; Jiang, L.; Xie, Y.; Liu, Y.; Liu, W.; Zhao, G. Design of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes: A History Driven by Biology to Chemistry. Med. Chem. (Sharjah, United Arab Emirates) 2015, 11 (4), 317−328.
32.    Thynne T, Doogue M. Experimental and Clinical Pharmacology: Sodium-glucose cotransporter inhibitors: Mechanisms of action. Australian Prescriber. 2013; 37(1):14-16.
33.    Scott C. Thomson, MD and Volker Vallon, MD, Renal Effects of Sodium-Glucose co transporter Inhibitors, The American Journal of Medicine, (Vol. 132, Issue 10S, October 2019, S28-S35.
34.    Fuyong Du, et al., Potent Sodium/Glucose Cotransporter SGLT1/2 Dual Inhibition Improves Glycemic Control Without Marked Gastrointestinal Adaptation or Colonic Microbiota Changes in Rodents, J Pharmacol Exp Ther 365, June 2018, 676–687.
35.    Chen J, Williams S, Ho S, Loraine H, Hagan D, Whaley JM, et al. QuantitativePCR tissue expression profiling of the human SGLT2 gene and related familymembers. Diabetes Ther.2010; 1:57-92.
36.    Chiara Ghezzi1 & Donald D. F. Loo1 & Ernest M. Wright, Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2, Diabetologia (2018) 61:2087–2097.
37.    Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: Rationale and clinical prospects. Nat. Rev. Endocrinol. [Internet]. 2012; 8:495–502.
38.    Madaan T, Akhtar M, Najmi AK. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective. Eur. J. Pharm. Sci. [Internet]. 2016; 93:244–252. Available from: http://dx.doi.org/10.1016/j.ejps.2016.08.025
39.    Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res. Clin. Pract. [Internet]. 2014; 104:297–322. Available from: http://dx.doi.org/10.1016/j.diabres.2014.02.014
40.    Miao Z, Nucci G, Amin N, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab. Dispos. 2013; 41:445–456
41.    Alvaro Garcia-Ropero, Juan J. Badimon & Carlos G. Santos-Gallego (2018): The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments, Expert Opinion on Drug Metabolism & Toxicology, DOI: 10.1080/17425255.2018.1551877
42.    Saeed M, Narendran P. Dapagliflozin for the treatment of type 2 diabetes: a review of the literature. Drug Design, Development and Therapy 2014; 8:2493-2505
43.    Mamidi RN, Cuyckens F, Chen J, et al. Metabolism and excretion of canagliflozin in mice, rats, dogs, and humans. Drug Metabolism and Disposition 2014; 42:903–916
44.    Polidori D, Sha S, Mudaliar S, et al. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion. Diabetes Care 2013; 36:2154-2161
45.    Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 2013; 36:2508–2515
46.    Andre´ J Scheen, Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations, Expert Opin. Drug Metab. Toxicol. (2014) 10(5):647-663
47.    Francesca Cinti, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date, Drug Design, Development and Therapy 2017:11 2905–2919.
48.    Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; etal. Empagliflozin, Cardiovascular Outcomes, and Mortality inType2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128.
49.    Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R., Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes N. Engl. J. Med. 2017, 377, 644–657.
50.    Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2018, 380, 347–357.
51.    Anker SD, Butler J, Filippatos GS, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail. 2019; 21(10):1279–1287
52.    Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.H.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019. [CrossRef] [PubMed]
53.    Santos-Gallego, C. G., Garcia-Ropero, A., Mancini, D., Pinney, S. P., Contreras, J. P., Fergus, I., … Badimon, J. J. Rationale and Design of the EMPA-TROPISM Trial (ATRU-4): Are the “Cardiac Benefits” of Empagliflozin Independent of its Hypoglycemic Activity? Cardiovascular Drugs and Therapy, (2019).
54.    Packer M, Butler J, Filippatos GS, et al. Evaluation of the effect of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial. Eur J Heart Fail. 2019; 21(10):1270–1278.
55.    Juan José Marín-Peñalver, Iciar Martín-Timón, Cristina Sevillano-Collantes, Francisco Javier del Cañizo-Gómez Update on the treatment of type 2 diabetes mellitus, world journal of diabetes; 2016; 7(17):354-395.
56.    Namyi Gu 1, Sang-In Park 2, Hyewon Chung 3, Xuanyou Jin 4, SeungHwan Lee 4, and Tae-Eun Kim; Possibility of pharmacokinetic drug interaction between a DPP-4 inhibitor and a SGLT2 inhibitor, Transl Clin Pharmacol. 2020 Mar; 28(1):17-33.
57.    Xourgia E, Papazafiropoulou AK, Karampousli E, Melidonis A, DPP-4 Inhibitors vs. SGLT-2 Inhibitors; Cons and Pros. Jour Ren Med., (2017), Vol.1 No.2:7
58.    Katherine Donnana and Lakshman Segar, SGLT2 inhibitors and metformin: Dual antihyperglycemic therapy and the risk of metabolic acidosis in type 2 diabetes, Eur J Pharmacol. 2019 March 05; 846: 23–29.
59.    L.Balant, Clinical Pharmacokinetics of Sulphonylurea Hypoglycaemic Drugs, Clinical Pharmacokinetics, 1981, 6: 215-241.
60.    Larry K. Golightly, Caitlin C. Drayna3 and Michael T. McDermott; Comparative Clinical Pharmacokinetics of Dipeptidyl Peptidase-4 Inhibitors, Clin Pharmacokinet 2012; 51 (8): 501-514.
61.    Rolf Mentlein, Therapeutic Assessment of glucagon -like peptide -1 agonists compared with dipeptidyl peptidase 4 inhibitors as potential antidiabetic drugs, Expert Opin. Investig. Drugs, 2005, 14(1), 57-64.
62.    Bruce Bode; An overview of the pharmacokinetics, efficacy and safety of liraglutide, Diabetes Research and Clinical Practice 97, 2012, 27-42.
63.    Lisbeth V. Jacobsen1, Anne Flint, Anette K. Olsen, Steen H. Ingwersen; Liraglutide in Type 2 Diabetes Mellitus: Clinical Pharmacokinetics and Pharmacodynamics, Clin Pharmacokinet (2016) 55:657–672.
64.    Abdulsalim S, Peringadi Vayalil M, Miraj SS. New fixed dose chemical combinations: the way forward for better diabetes type II management? Expert Opinion on Pharmacotherapy. 2016 Nov 1; 17(16):2207-2214
65.    Mazidi, M.; Rezaie, P.; Gao, H.K.; Kengne, A.P. E_ect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in PeopleWith Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Control Trials With 22 528 Patients. J. Am. Heart Assoc. 2017, 6, 1-12.
66.    Rajeev, S.P.; Cuthbertson, D.J.; Wilding, J.P. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes. Metab. 2016, 18, 125–134.
67.    SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects Anastasios Tentolouris, Panayotis Vlachakis, Evangelia Tzeravini, Ioanna Eleftheriadou and Nikolaos Tentolouris 2019, 16, 1-27
68.    Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res. Clin. Pract. [Internet]. 2014; 104:297–322. Available from: http://dx.doi.org/10.1016/j.diabres.2014.02.014.
69.    Ferrannini E, Seman L, Seewaldt-Becker E, et al. A Phase IIb, randomized, placebocontrolled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes, Obes. Metab. 2013; 15:721–728.
70.    Rosenstock J, Seman LJ, Jelaska A, et al. Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, as add-on to metformin in type 2 diabetes with mild hyperglycaemia. Diabetes, Obes. Metab. 2013; 15:1154–1160.
71.    Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin As Add-on to Metformin Type 2 Diabetes. Diabetes Care. 2013; 36:1–9.
72.    Neal B, Perkovic V, De Zeeuw D, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015; 38:403-411
73.    Fulcher G, Matthews DR, Perkovic V, et al. Efficacy and Safety of Canagliflozin Used in Conjunction with Sulfonylurea in Patients with Type 2 Diabetes Mellitus: A Randomized, Controlled Trial. Diabetes Ther. 2015; 6:289-302
74.    Schernthaner G, Gary M. Canagliflozin Compared With Sitagliptin for Patients With Type 2 Diabetes Who With Metformin Plus Sulfonylurea. Diabetes Care. 2013; 36:2508–2515.
75.    Henry RR, Murray A V., Marmolejo MH, et al. Dapagliflozin, metformin XR, or both: Initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int. J. Clin. Pract. 2012; 66:446–456.
76.    Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, doubleAccepted Manuscript blind, placebo-controlled trial. Lancet. 2010; 375:2223–2233
77.    Rosenstock, Julio, Vico, Marisa, Wei, Li, Salsali, Afshin, List JF. Effects of Dapagliflozin, an SGLT2 Inhibitor, on HbA1c, Body Weight, and Hypoglycemia Risk in Patients With Type2Diabetes Inadequately Controlled on Pioglitazone Monotherapy. Diabetes Care. 2012; 35:1473–1478.
78.    Jabbour SA, Hardy E, Sugg J, et al. Dapagliflozin is effective as add-on therapy to sitagliptin with or withoutmetformin: A 24-Week, multicenter, randomized, double-blind, placebo-controlled study. Diabetes Care. 2014; 37:740–750.
79.    Wilding JP Soler NG PASJRKPSSD 006 W V. Longterm efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin. 2013;
80.    Terra SG, Focht K, Davies M, et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes, Obes. Metab. 2017; 19:721–728.
81.    Rosenstock J, Frias J, Páll D, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes, Obes. Metab. 2018; 20:520–529
82.    Miller S, Krumins T, Zhou H, et al. Ertugliflozin and Sitagliptin Co-initiation in Patients with Type 2 Diabetes: The VERTIS SITA Randomized Study. Diabetes Ther. [Internet]. 2018; 9:253–268. Available from: https://doi.org/10.1007/s13300-017-0358-0.
83.    Cryer PE. The barrier of hypoglycemia in diabetes. Diabetes 2008; 57:3169-76.
84.    Scheen AJ. SGLT2 inhibition: efficacy and safety in type 2 diabetes treatment. Expert Opin Drug Saf 2015; 14:1879-904.
85.    Yang XP, Lai D, Zhong XY, Shen HP, Huang YL. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur J Clin Pharmacol 2014; 70:1149-58.
86.    Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2014; 30:204-21.
87.    Liakos A, Karagiannis T, Athanasiadou E, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014; 16:984-93.
88.    Pafili K, Papanas N. Luseogliflozin and other sodium-glucose cotransporter 2 inhibitors: no enemy but time? Expert Opinion in Pharmacotherapy 2015; 16(4):453-456
89.    Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Annals of Internal Medicine 2012; 156(6):405–415
90.    Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes, Obesity and Metabolism 2011; 13(10):928-938
91.    Rosenstock J, Vico M, Wei L, et al. Effects of Dapagliflozin, an SGLT2 Inhibitor on HbA1C, Body Weight, and Hypoglycemia Risk in Patients with Type 2 Diabetes Inadequately Controlled on Pioglitazone Monotherapy. Diabetes Care 2012; 35(7):1473-1478
92.    Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. International Journal of Clinical Practice 2013; 67(12):1267-1282
93.    Häring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013; 36(11):3396-3404
94.    Kushner P. Benefits/risks of sodium-glucose co-transporter 2 inhibitor canagliflozin in women for the treatment of type 2 diabetes. Womens Health. 2016; 12:379-388.
95.    Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S. Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 2014; 103:37381.
96.    Nyirjesy P, Sobel JD. Genital mycotic infections in patients with diabetes. Postgrad Med. 2013; 125:33-46.
97.    Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2014; 30:204-21.
98.    Dave CV, Schneeweiss S, Patorno E. Comparative risk of genital infections associated with sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab. 2019; 21(2):434-438.
99.    Nyirjesy P, Zhao Y, Ways K, Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr Med Res Opin. 2012; 28:1173-1178.
100.    Curt J. Carlson & Marile L. Santamarina (2016): Update review of the safety of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with type 2 diabetes mellitus, Expert Opinion on Drug Safety
101.    Thong KY, Yadagiri M, Barnes DJ, et al. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: the ABCD nationwide dapagliflozin audit. Prim Care Diabetes. 2018; 12:45-50
102.    LipscombeL, BoothG, ButaliaS, et al. Pharmacologicglycemic management of type 2 diabetes in adults. Can J Diabetes 2018; 42(Suppl 1):S88–S103. 16.
103.    Thong KY, Yadagiri M, Barnes DJ, et al. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: the ABCD nationwide dapagliflozin audit. Prim Care Diabetes. 2018; 12:45-50.
104.    Parveen R, Agarwal NB, Kaushal N, Mali G, Raisuddin S. Efficacy and safety of canagliflozin in type 2 diabetes mellitus: systematic review of randomized controlled trials. Expert Opin Pharmacother 2016; 17:105-15.
105.    Yang XP, Lai D, Zhong XY, Shen HP, Huang YL. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur J Clin Pharmacol 2014; 70:1149-58.
106.    Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2014; 30:204-21.
107.    Ptaszynska A, Johnsson KM, Parikh SJ, de Bruin TW, Apanovitch AM, List JF. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf 2014; 37:815-29
108.    Kohler S, Salsali A, Hantel S, et al. Safety and tolerability of empagliflozin in patients with type 2 diabetes. Clin Ther 2016:[Epub ahead of print].
109.    Liakos A, Karagiannis T, Athanasiadou E, et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014; 16:984-93.
110.    Puckrin R, Saltiel MP, Reynier P, et al. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2018; 55:503-14
111.    Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors. Diabetes Obes Metab. 2019; 21(Suppl. 2):34–42
112.    Abdul-Ghani MA, DeFronzo RA. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract 2008; 14:782-90.
113.    DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab 2012; 14:5-14.
114.    Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017; 6.
115.    Scheen AJ. SGLT2 inhibitors: benefit/risk balance. Curr Diabetes Rep 2016; 16:92
116.    Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2013; 159:262
117.    Cherney DZ, Udell JA. Use of sodium glucose cotransporter 2 inhibitors in the hands of cardiologists: with great power comes great responsibility. Circulation. 2016; 134:1915-1917.
118.    Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016; 4:211-220
119.    Heise T, Mattheus M, Woerle HJ, Broedl UC, Macha S. Assessing pharmacokinetic interactions between the sodium glucose cotransporter 2 inhibitor empagliflozin and hydrochlorothiazide or torasemide in patients with type 2 diabetes mellitus: a randomized, open-label, crossover study. Clin Ther. 2015; 37:793-80
120.    Review on the relationship between SGLT2 inhibitors and cancer. Int J Endocrinol. 2014; 2014:719578.
121.    Scott LJ. Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs 2014; 74:1769-84.
122.    Frampton, J. E.. Empagliflozin: A Review in Type 2 Diabetes. Drugs 2018, 78(10), 1037–1048.
123.    Lin HW, Tseng CH. A review on the relationship between SGLT2 inhibitors and cancer. Int J Endocrinol 2014; 2014:719578
124.    Ljunggren Ö, Bolinder J, Johansson L, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 2012; 14:990-9.
125.    Schwartz AV, Vittinghoff E, Sellmeyer DE et al. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 2008; 31: 391–396
126.    Schwartz AV, Garnero P, Hillier TA et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 2009; 94: 2380–2386.
127.    Garris DR, Burkemper KM, Garris BL. Influences of diabetes (db/db), obese (ob/ob) and dystrophic (dy/dy) genotype mutations on hind limb bone maturation: a morphometric, radiological and cytochemical indices analysis. Diabetes Obes Metab 2007; 9: 311–322
128.    Bolinder J, Ljunggren Ö, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014; 16:159-69.
129.    Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014; 85:96271.
130.    Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabet Endocrinol 2015; 3:8–10.
131.    David Fitchett MD, A safety update on sodium glucose co-transporter 2 inhibitors, Diabetes Obes Metab. 2019; 21(Suppl. 2):34–42.
132.     Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2016; 101:157-66.
133.     Neal B, Perkovic V, Mahaffey KW, et al.; Group Canvas Program Collaborative. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017.
134.     J. Rutering, M.Ilmer, A.Recio et al., SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice, Bone. 2016 January; 82: 101–107
135.    Kohler S, Zeller C, Iliev H, Kaspers S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: pooled analysis of phase I-III clinical trials. Adv Ther. 2017; 34:1707-1726.
136.    Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care. 2018; 41: e4-e5.
137.    David Fitchett MD, A safety update on sodium glucose co-transporter 2 inhibitor, Diabetes Obes Metab. 2019; 21(Suppl. 2):34–42.
138.    Palmer BF, Clegg DJ, Taylor SI, Weir MR. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. J Diabetes Complicat. 2016; 30:1162-1166.
139.    Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015; 38:1687-1693.
140.    Umpierrez GE. Ketosis-prone type 2 diabetes: time to revise the classification of diabetes. Diabetes Care 2006; 29:2755-7.
141.    Henry RR, Thakkar P, Tong C, Polidori D, Alba M. Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care. 2015; 38: 2258-2265.
142.    Rosenstock J, Marquard J, Laffel LM, et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care. 2018; 41:2560-2569.
143.    D'Elia JA, Segal AR, Bayliss GP, et al. Sodium-glucose cotransporter-2 inhibition and acidosis in patients with type 2 diabetes: a review of US FDA data and possible conclusions. Int J Nephrol Renovasc Dis 2017; 10:153-58.
144.    Bersoff-Matcha, S.J.; Chamberlain, C.; Cao, C.; Kortepeter, C.; Chong, W.H. Fournier Gangrene Associated with Sodium-Glucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases. Ann. Intern. Med. 2019
145.    C. Tzanetakos et al., Cost Effectiveness of Dapagliflozin as Add-On to Metformin for the treatment of Type 2 Diabetes Mellitus in Greece, Clin Drug Investig, November 2015, 7-11.
146.    Hongmei wang et al., Ipragliflozin as an add-on therapy in type 2 diabetes mellitus patients: An evidence -based pharmacoeconomic evaluation, Diabetes Research and Clinical Practice, September 2019, 1-11.
147.    Wedad Rahman et al., Pharmacoeconomic evaluation of sodium-glucose transporter-2 (SGLT2) inhibitors for the treatment of type 2 diabetes, Expert Opinion On Pharmacotherapy, October 2018, 1-12.
148.    Kuang H, Liao L, Chen H, et al. Therapeutic effect of sodium glucose cotransporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit 2017; 23:3737-45.
149.    Kaji K, Nishimura N, Seki K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer 2018; 142:1712-22.

Recomonded Articles:

Author(s): Mohammad Shamim Qureshi, A. Venkateshwar Reddy, G. S. Kumar, Lubna Nousheen

DOI: 10.5958/2231-5691.2017.00017.X         Access: Open Access Read More

Author(s): Vani Mamillapalli, Latha Sri Kondaveeti, Ratna Harika Chapala, Tejaswi Komal Sai. Sareddu, Santhi Pattipati, Padmalatha Khantamneni

DOI: 10.52711/2231-5691.2022.00014         Access: Open Access Read More

Author(s): Lalita Balasaheb Patil, Swapnil S. Patil, Manoj M. Nitalikar, Chandrakant S. Magdum, Shrinivas K. Mohite

DOI: 10.5958/2231-5691.2016.00030.7         Access: Open Access Read More

Author(s): P. Mounika, M.N.L. Aishwarya, Pranabesh Sikdar, S. Prathima, M. Niranajan Babu

DOI: 10.5958/2231-5691.2017.00021.1         Access: Open Access Read More

Author(s): P. Jaya Preethi

DOI:         Access: Open Access Read More

Author(s): Sampada S. Sawant, Vishal R. Randive, Savita R. Kulkarni

DOI: 10.5958/2231-5691.2017.00013.2         Access: Open Access Read More

Author(s): Sachin B. Somwanshi, Punam D. Bairagi, Kiran B. Kotade

DOI: 10.5958/2231-5691.2017.00020.X         Access: Open Access Read More

Author(s): Mohd. Yaqub Khan, Irfan Aziz, Bipin Bihari, Hemant Kumar, Maryada Roy, Vikas Kumar Verma

DOI:         Access: Open Access Read More

Author(s): Shah Murad, Seema, A Ghaffar, G Mujtaba Abbasi, Ijaz Ur Rehman, Abdul Qadir

DOI: 10.5958/2231-5691.2019.00024.8         Access: Open Access Read More

Author(s): Jadhav Sameer S., Salunkhe Vijay R. , Magdum Chandrakant S.

DOI:         Access: Open Access Read More

Author(s): Popat S. Kumbhar, Tejaswini P. Jadhav, Swapnil S. Chopade, Tejas T. Gavade, Rushikesh C. Sorate, Tejaswini U. Shinde, Pratik P. Maske, John I. Disouza, Arehalli S. Manjappa

DOI: 10.5958/2231-5691.2021.00010.1         Access: Open Access Read More

Author(s): Goli. Venkateshwarlu, Ragya Eslavath, A.Santhosh, Gutha Suma, E.Rajeshwari, CH.Ramesh

DOI:         Access: Open Access Read More

Author(s): Dharmesh Sharma, Deepak Prashar, Sanjay Saklani

DOI:         Access: Open Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 


Recent Articles




Tags