Author(s): Prajakta Kegade, Akshay Gade, Rutuja Sawant, Shreya Parkar

Email(s): prajaktakegade95@gmail.com

DOI: 10.5958/2231-5691.2020.00050.7   

Address: Miss. Prajakta Kegade*, Mr. Akshay Gade, Miss. Rutuja Sawant, Miss. Shreya Parkar
Department of Pharmaceutics, M Pharmacy, University of Mumbai, Vidya Nagari, Kalina, Santacruz East, Mumbai, Maharashtra 400098.
*Corresponding Author

Published In:   Volume - 10,      Issue - 4,     Year - 2020


ABSTRACT:
Nanomedicinal formulations are nanometer-sized carriers designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Liposomes is one of the novel nanoscale drug delivery system which is a spherical vesicle with a membrane composed of phospholipid bilayer used for drug delivery. Liposomes have been considered to be most successful nano-carriers. Liposomes overcome the limitations of conventional chemotherapy by improving bioavailability and stability of drug also minimizing side effects by site specific targeted delivery, hence gain more advantages in cancer therapy. Cancer is a uncontrolled growth of cells. The cells causing cancer are called as malignant cells. Most of the active pharmaceutical ingredients used in the chemotherapy are highly cytotoxic to both cancer and normal cells to overcome this side effects liposomal treatment is useful. The liposomal drugs have high encapsulation capacity, hence shows a significant anticancer activity. The systemic administration of the free drug is considered to be the main clinical failure of chemotherapy in cancer treatment, as limited drug concentration reaches the tumour site. Most of the active pharmaceutical ingredients (APIs) used in chemotherapy are highly cytotoxic to both cancer and normal cells. Accordingly, targeting the tumour vasculatures is essential for tumour treatment. This short-review focuses on the use of liposomes in anti-cancer drug delivery.


Cite this article:
Prajakta Kegade, Akshay Gade, Rutuja Sawant, Shreya Parkar. Liposomal drug delivery in Cancer. Asian J. Pharm. Res. 2020; 10(4):293-298. doi: 10.5958/2231-5691.2020.00050.7

Cite(Electronic):
Prajakta Kegade, Akshay Gade, Rutuja Sawant, Shreya Parkar. Liposomal drug delivery in Cancer. Asian J. Pharm. Res. 2020; 10(4):293-298. doi: 10.5958/2231-5691.2020.00050.7   Available on: https://asianjpr.com/AbstractView.aspx?PID=2020-10-4-8


REFERENCE:
1.    Andreas W, Karola VU: Liposome technology for industrial purposes. J Drug Deliv 201:9.
2.    Takechi-haraya Y, Goda Y., Sakai Kato K. Control of Liposomal penetration into three dimensional multicellular tumour spheroid by modulating liposomal membrane rigidity. Mol. Pharma.2017;14:2158-2165.
3.    Bangham A.D. Physical structure and behavior of lipids and lipids enzyme. Adv.Lipid Res. 1963;1:65-104.
4.    Rahman A, Carmichael D, Harris M, Roh JK. Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Res. 1986;46: 2295–2299.
5.    Davis AJ, Tannock IF. Tumor physiology and resistance to chemotherapy: repopulation and drug penetration. Cancer Treat Res. 2002; 112:1–26.
6.    Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6: 583–592.
7.    Papahadjopoulos D, editor. Liposomes and their uses in biology and medicine. New York: Annals of the New York Academy of Sciences; 1978.
8.    Tyagi N and Ghosh PC. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of monensin intercalated into folate-tagged liposomes. Eur J Pharm Sci. 2011; 43: 343-353.
9.    Mohammed, A.R.; Weston, N.; Coombes, A.G.A.; Fitzgerald, M.; Perrie, Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004, 285, 23–34.
10.    Mukherjee, B.; Patra, B.; Layek, B.; Mukherjee, A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study. Int. J. Nanomed. 2007, 2, 213–225.
11.    Allen, T.M. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 1994, 15, 215–220.
12.    Allen, T.M.; Martin, F.J. Advantages of liposomal delivery systems for anthracyclines. Semin. Oncol. 2004, 31, 5–15.
13.    Cristiano, M.C.; Cosco, D.; Celia, C.; Tudose, A.; Mare, R.; Paolino, D.; Fresta, M. Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf. B: Biointerfaces 2017, 150, 408–416.
14.    Allen, T.M.; Cheng, W.W.; Hare, J.I.; Laginha, K.M. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer Agents Med. Chem. 2006, 6, 513–523.
15.    Matsuo, H.; Wakasugi, M.; Takanaga, H.; Ohtani, H.; Naito, M.; Tsuruo, T.; Sawada, Y. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J. Control. Release 2001, 77, 77–86.
16.    Wang, C.X.; Li, C.L.; Zhao, X.; Yang, H.Y.; Wei, N.; Li, Y.-H.; Zhang, L.; Zhang, L. Pharmacodynamics, pharmacokinetics and tissue distribution of liposomal mitoxantrone hydrochloride. Yao Xue Xue Bao 2010, 45, 1565–1569.
17.    Park, K.; Kwon, I.C.; Park, K. Oral protein delivery: Current status and future prospect. React. Funct. Polym. 2011, 71, 280–287.
18.     Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102.
19.    Gregoriadis G, Florene A. T. Liposomes in Drug Delivery: Clinical, Diagnostic and Opthalmic Potential. Drugs 1993;45 15-28.
20.    Campbell P.I. Toxicity of Some Charged Lipids Used in Liposome Preparations. Cytobios 1983;37 (1983) 21-26.
21.    Grislain L, Couvreur P, Lenaerts V, Roland M, Depreg-Decampeneere D, Speiser P. Pharmacokinetics and Distribution of a Biodegradable Drug-carrier. International Journal of Pharmacology 1983;15 335-338.
22.    Illum L, Gones P.D.E, Kreuker J, Daldwin R.W, Davis D.D. Adsorption of Monoclonal Antibodies to Polyhexylcyanoacrylate Nanoparticles and Subsequent Immunospecific Binding to Tumor Cells. International Journal of Pharmacology 1983;1765-69
23.    Babai I, Samira S, Barenholz Y, Zakay-Rones Z, Kedar E: A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/ neuraminidase and IL-2 or GM-CSF. I. Vaccine characterization and efficacy studies in mice. Vaccine 1999, 17:1223–1238.
24.    Banerjee R, Tyagi P, Li S, Huang L: Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 2004, 112:693–700.
25.    Baselga J, Metselaar JM: Monoclonal antibodies: clinical applications: monoclonal antibodies directed against growth factor receptors. In Principles and Practice of Biological Therapy of Cancer. Edited by Rosenburg SA. Philadelphia: Lippincott; 2000:475–489
26.    Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci. 2018, 19, 195.
27.    Yadav, A.; Murthy, M.S.; Shete, A.S.; Sakhare, S. Stability aspects of liposomes. Indian J. Pharm. Educ. Res. 2011, 45, 402–413.
28.    Ceh, B.; Lasic, D.D. A rigorous theory of remote loading of drugs into liposomes. Langmuir 1995, 11, 3356–3368.
29.    Briuglia, M.-L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015, 5, 231–242.
30.    Crommelin, D.J. Influence of lipid composition and ionic strength on the physical stability of liposomes. J. Pharm. Sci. 1984, 73, 1559–1563.
31.    Crommelin, D.J. Influence of lipid composition and ionic strength on the physical stability of liposomes. J. Pharm. Sci. 1984, 73, 1559–1563.
32.    Frokjaer, S.; Hjorth, E.L.; Worts, O. Stability and storage of liposomes. In Optimization of Drug Delivery; Bundgaard, H., Bagger Hansen, A., Kofod, H., Eds.; Munkgaard: Copenhagen, Denmark, 1982.
33.    Yadav, A.; Murthy, M.S.; Shete, A.S.; Sakhare, S. Stability aspects of liposomes. Indian J. Pharm. Educ. Res. 2011, 45, 402–413
34.    Munye M.M., Ravi J., Tagalakis A.D., McCarthy D., Ryadnov M.G., Hart S.L. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci. Rep. 2015;5: 9292.
35.    Briuglia M.-L., Rotella C., McFarlane A., Lamprou D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015;5: 231–242.
36.    Liu W., Wei F., Ye A., Tian M., Han J. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin. Food Chem. 2017;230-242.
37.    Kaddah S., Khreich N., Kaddah F., Charcosset C., Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018;113: 40–48.
38.    Gomez-Hens A, Fernandez-Romero J. M. Analytical Methods for the Control of Lipo‐ somal Delivery Systems. Trends in Analytical Chemistry 2006;25 167-178.
39.    Mozafari M.R, Johnson C, Hatziantoniou S, Demetzos C. Nanoliposomes and Their Applications in Food Nanotechnology. Journal of Liposome Research 2008;18 309-327.
40.    Dua J.S, Rana A.C, Bhandari A.K. Liposome: Methods of Preparation and Applica‐ tions. International Journal of Pharmaceutical Studies and Research 2012;3(2) 14-20.
41.    Riaz M: Liposome preparation method. Pak J Pharm Sci 1996, 9(1):65–77.
42.    Himanshu A, Sitasharan P, Singhai AK: Liposomes as drug carriers. IJPLS 2011, 2(7):945–951.
43.    Riaz M: Liposome preparation method. Pak J Pharm Sci 1996, 9(1):65–77.
44.    Kataria S, Sandhu P, Bilandi A, Akanksha M, Kapoor B, Seth GL, Bihani SD: Stealth liposomes: a review. IJRAP 2011, 2(5):1534–1538
45.    Rickwood D, Hames BD. Liposomes: A Practical Approach. IRL Press; 1994
46.    Schieren H, Rudolph S, Findelstein M, Coleman P, Weissmann G: Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim Biophys Acta 1978, 542(1):137–153
47.    Shaheen SM, Shakil Ahmed FR, Hossen MN, Ahmed M, Amran MS, Ul-Islam MA: Liposome as a carrier for advanced drug delivery. Pak J Biol Sci 2006, 9(6):1181–1191.
48.    Motamarry, A.; Asemani, D.; Haemmerich, D. Thermosensitive Liposomes. In Liposomes; Catala, A., Ed.; InTech: Rijeka, Croatia, 2017.
49.    Gogoi, M.; Kumar, N.; Patra, S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In Nanoarchitectonics Smart Delivery Drug Targeting; Holban, A.M.,Grumezescu, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 743–782.
50.    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189–207.
51.    Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin. Drug Deliv.2010,7(2), 225–243.
52.    Moghimipour E, Rezaei M, Ramezani Z et al. Folic acid-modified liposomal drug delivery strategy for tumortargeting of 5-fluorouracil. Eur. J. Pharm. Sci. 2010, 114, 166–174.
53.    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189–207.
54.    Voinea M, Simionescu M. Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J. Cell. Mol. Med. 6(4), 465–474 (2002).
55.    Bradley AJ, Devine DV, Ansell SM, Janzen J, Brooks DE. Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids. Arch Biochem Biophys1998; 357: 185-94.
56.    Gogoi, M.; Kumar, N.; Patra, S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In Nanoarchitectonics Smart Delivery Drug Targeting; Holban, A.M. Grumezescu, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 743–782.
57.    Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol2008, . 26(1), 57–64.
58.    Torchilin V. Passive and active drug targeting: drug delivery to tumors as an example. Handb. Exp. Pharmacol. (2010).197, 3–53
59.    Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug. Deliv. Rev. (2011). 63(3), 131–135
60.    Torchilin VP. Drug targeting. Eur. J. Pharm. Sci. 11, (2000). S81–S91
61.    Kale AA, Torchilin VP. Environment¬ responsive multifunctional liposomes. Methods Mol. Biol. 605, (2010). 213–242
62.     Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release(2012), 164(2), 138–144
63.    Motamarry, A.; Asemani, D.; Haemmerich, D. Thermosensitive Liposomes. In Liposomes; Catala, A.,Ed.; InTech: Rijeka, Croatia, 2017.
64.    Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev. 2015, 115,10907–10937.
65.    Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. (2007). 9(2), 128–147.
66.    Taleka M, Kendall J, Denny W, Garg s, Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs (2011)., 22(10), 949
67.    Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs (2011)., 22(10), 949
68.    Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev. 2015, 115,10907–10937.
69.    Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges andfundamental considerations. Trends Biotechnol. (2014). 32(1), 32–45
70.    Nguyen TX, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oraldrug delivery. Nanomedicine (2016). 11(9), 1169–1185
71.    Allen TM and Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013; 65: 36-48.
72.    Riviere K, Kieler-Ferguson HM, Jerger K, Szoka FC, Jr. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. Control Release. 2011; 153: 288-296.
73.    Hardiansyah, A.; Huang, L.-Y.; Yang, M.-C.; Liu, T.Y.; Tsai, S.C.; Yang, C.Y.; Kuo, C.Y.; Chan, T.Y.; Zou, H.M.; Lian, W.N.; et al. Magnetic liposomes for colorectal cancer cells therapy by high-frequencymagnetic field treatment. Nanoscale Res. Lett. 2014, 9, 497.
74.    Zhou, J.; Zhao, W.-Y.; Ma, X.; Ju, R.J.; Li, X.Y.; Li, N.; Sun, M.G.; Shi, J.F.; Zhang, C.X.; Lu, W.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate inresistant lung cancer. Biomaterials 2013, 34, 3626–3638.
75.    Legut, M.; Lipka, D.; Filipczak, N.; Piwoni, A.; Kozubek, A.; Gubernator, J. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines—in vitro studies.Int. J. Nanomed. 2014, 9, 653–668.
76.    Berlin Grace, V.M.; Viswanathan, S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J. Drug Deliv. Sci. Technol. 2017, 39, 223–236.

Recomonded Articles:

Author(s): Habeeb Ahmed, Mohammed Ehtesham, Nuha Rasheed , Abdul Saleem Mohammad

DOI: 10.5958/2231-5691.2017.00006.5         Access: Open Access Read More

Author(s): Hiral A. Makadia, Ami Y. Bhatt, Ramesh B. Parmar, Ms. Jalpa S. Paun, H.M. Tank

DOI:         Access: Open Access Read More

Author(s): Prajapati M., Mandloi R., Pillai S, Birla N.

DOI: 10.5958/2231-5691.2020.00021.0         Access: Open Access Read More

Author(s): Sandesh Narayan Somnache, Ajeet Madhukar Godbole, Pankaj Sadashiv Gajare, Sapna Kashyap

DOI: 10.5958/2231-5691.2016.00028.9         Access: Open Access Read More

Author(s): Nikita R. Nikam, Rohan R. Vakhariya, Dr. C. S. Magdum

DOI: 10.5958/2231-5691.2019.00018.2         Access: Open Access Read More

Author(s): S.C. Shivhare, U.D.Shivhare, Preeti Srivastav, K.G. Malviya

DOI:         Access: Open Access Read More

Author(s): Rutuja S. Shah, Rutuja R. Shah, Manoj M. Nitalikar, Chandrakant S. Magdum

DOI: 10.5958/2231-5691.2017.00028.4         Access: Open Access Read More

Author(s): AK Meena, MM Rao, RP Meena, P Panda, Renu

DOI:         Access: Open Access Read More

Author(s): Audumbar Mali, Santosh Jadhav, Rahul Gorad, Aamer Quazi, Ritesh Bath, Manojkumar Patil, Ashpak Tamboli

DOI: 10.5958/2231-5691.2016.00017.4         Access: Open Access Read More

Author(s): Mohd. Yaqub Khan, Poonam Gupta, Bipin Bihari, Vineet Kumar Sharma, Irfaan Aziz

DOI:         Access: Open Access Read More

Author(s): Sheetal B. Gondkar, Shalaka P. Rasal, Ravindra B. Saudagar

DOI: 10.5958/2231-5691.2016.00027.7         Access: Open Access Read More

Author(s): Subhashis Debnath, C. Navya Yadav, N. Nowjiya, M. Prabhavathi, A. SaiKumar, P. Sai Krishna, M. Niranjan Babu

DOI: 10.5958/2231-5691.2019.00009.1         Access: Open Access Read More

Author(s): Vidya Raju*, Jasmine Joy Bell, Merlin. N. J, Shaiju S Dharan

DOI: 10.5958/2231-5691.2017.00037.5         Access: Open Access Read More

Author(s): Rutuja S. Shah, Rutuja R. Shah, Manoj M. Nitalikar, Chandrakant S. Magdum

DOI: 10.5958/2231-5691.2017.00024.7         Access: Open Access Read More

Author(s): Neha Meshram, Mithlesh Ojha, Ajay Singh, Amit Alexander, Ajazuddin, Mukesh Sharma

DOI: 10.5958/2231-5691.2015.00009.X         Access: Open Access Read More

Author(s): B.A. Bhairav, J.K. Bachhav, R.B. Saudagar

DOI: 10.5958/2231-5691.2016.00025.3         Access: Open Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 


Recent Articles




Tags