Author(s):
Komal D. Pol, Pradnya N. Jagtap, Vishakha Vikas Jagatap, Shweta S. Bobade, Vaishnavi P. More, Ankita M. Kadam, Pratibha Deshmukh, Ashwini Kunjir
Email(s):
polkomal94@gmail.com
DOI:
10.52711/2231-5691.2024.00025
Address:
Komal D. Pol1*, Pradnya N. Jagtap2, Vishakha Vikas Jagatap3, Shweta S. Bobade4, Vaishnavi P. More5, Ankita M. Kadam6, Pratibha Deshmukh7, Ashwini Kunjir8
1Master of Pharmacy, Department of Pharmacology, Pune District Education Association’s
Seth Govind Raghunath Sable College of Pharmacy, Saswad, Pune, India 412301.
2Head of Department, Department of Pharmacology, Pune District Education Association’s
Seth Govind Raghunath Sable College of Pharmacy, Saswad, Pune, India 412301.
3,4,5,6,7Master of Pharmacy, Department of Pharmacology, Pune District Education Association’s
Seth Govind Raghunath Sable College of Pharmacy, Saswad, Pune, India 412301.
*Corresponding Author
Published In:
Volume - 14,
Issue - 2,
Year - 2024
ABSTRACT:
Drugs called central nervous system (CNS) stimulants hasten both mental and physical functions. Narcolepsy and new born apnea are two disorders characterised by a lack of adrenergic stimulation that are treated with central nervous system stimulants. Moreover, the paradoxical effects of dextroamphetamine sulphate (Dexedrine) and methylphenidate (Ritalin) on attention-deficit hyperactivity disorder are invoked to justify their use (ADHD). The majority of CNS stimulants mimic the classic "fight or flight" condition linked to sympathetic nervous system activation and are chemically comparable to the neurohormone norepinephrine. The xanthines, including theophylline, and caffeine are more intimately connected to one another. A few more CNS stimulant class members do not belong to any particular chemical classes. A detailed analysis of CNS stimulant medications, their mechanisms of action, and in vivo CNS stimulant models is provided in the review on central nervous system stimulants.
Cite this article:
Komal D. Pol, Pradnya N. Jagtap, Vishakha Vikas Jagatap, Shweta S. Bobade, Vaishnavi P. More, Ankita M. Kadam, Pratibha Deshmukh, Ashwini Kunjir. Review Paper on Models for CNS Stimulant Drug Screening. Asian Journal of Pharmaceutical Research. 2024; 14(2):148-2. doi: 10.52711/2231-5691.2024.00025
Cite(Electronic):
Komal D. Pol, Pradnya N. Jagtap, Vishakha Vikas Jagatap, Shweta S. Bobade, Vaishnavi P. More, Ankita M. Kadam, Pratibha Deshmukh, Ashwini Kunjir. Review Paper on Models for CNS Stimulant Drug Screening. Asian Journal of Pharmaceutical Research. 2024; 14(2):148-2. doi: 10.52711/2231-5691.2024.00025 Available on: https://asianjpr.com/AbstractView.aspx?PID=2024-14-2-10
4. REFERENCES:
1. Taylor DA. http://el.trc.gov.om:4000/htmlroot/MEDICAL/ tcolon/neurology/General/E-Books/Central%20Nervous%20System.pdf
2. Tripathi KD. Essentials of Medical Pharmacology, VI edition, Jaypee brothers medical publishers, New Delhi. (2010) 126-127, 218-222, 437-438.
3. Winnicka K. Piracetam an old drug with novel properties. Acta Poloniae Pharmaceutica Drug Research. 62 (5) (2005) 405-409.
4. Bajsbini M, Gaiardi M and Bartoletti M. Motility effects of methamphetamine in rats chronically treated with morphine. Neuropharmacology. 17: 979-983
5. Sambath R, Sundram S, Kumar S, Netaji, Tarragon SV, Lopez, Ros-Bernal, Yuste, Ortiz, Martin, Schenker, Aujard, Bordet, Richardson, Herrero. The radial arm maze for the evaluation of working and reference memory deficits in the diurnal rodent Octodon degus. The Netherlands. 2012: 28-31.
6. Vikram, Swati. Evaluation of antidepressant like effects of Citrus maxima leaves in animal models of depression. Iranian Journal of Basic Medical Sciences. 14(5) (2011) 478-483.
7. Woode, Amidu, William, Boakye, Laing, Ansah, Duwiejua. Anxio genic like effects of a root extract of Sphenocentrum jollyanum Pierre in murine behavioral models. Journal of Pharmacology and Toxicology. 2009; 4(3): 91-106.
8. Casarrubea M, Santangelo A, Sorbera F, Crescimanno G. Microstructural assesment of rodent behavior in the hole board experiment assay. The Netherlands. 2010: 24-27.
9. Khan ZA, Ghosh AR. L-Arginine abolishes the anxiolytic like effects of withaferin A in the elevated plus maze test in rats. African Journal of Pharmacy and Pharmacology. 2011; 5(2): 234-237.
10. Islam MR, Naima J, Proma NM, Hussain MS, Uddin SN, Hossain MK, In-vivo and in-vitro evaluation of pharmacological activities of Ardisia solanacea leaf extract, Phytomedicine. 2019; 5: 1–11.
11. Nagandla K, De S, Restless legs syndrome: pathophysiology and modern management, Postgrad. Med. 2013; 89: 402–410.
12. Paulo LJ, Silvania, Gislei, Emmanuelle, Patricia, Glauce. Behavioral and neurochemical effects on rat ofspring sfter prenatal exposure to ethanol. Neurotoxicology and Teratology. 2005; 27: 585-592.
13. Doke, Tare, Sherikar, Shende, Deore, Dama. Central nervous system stimulant of the oils obtained from seeds of Cucurbita maxima. International Journal of Pharmaceutical Biology. 2011; 1(1): 30-36.
14. Dnyandeo R, Jayam M. Analgesic and CNS depressant activities of extracts of Annona reticulata Linn. bark. Phytopharmacology. 2011: 1(5): 160-165.
15. Owolabi, Amaechina, Eledan. Central nervous system stimulant effect of the ethanolic extract of Kigelia africana. Journal of Medicinal Plants Research. 2(2) (2008) 20-23.
16. Kumar S, Kishore K, Singh V. Central nervous system activity of acute administration of ethanol extract of Punica granatum L. seeds. Indian Journal of Experimental Biology. 2008; 46: 811-816.
17. Kothiyal P. Comparative nootropic effects of Evolvulus alsinoides and Convolvulus pluricaulis. International Journal of Pharma and Biosciences. 2011; 2(1): 616-621.