Author(s):
Saira Sehar, Amiza, I. H Khan
Email(s):
saharrana111@gmail.com
DOI:
10.52711/2231-5691.2021.00024
Address:
Saira Sehar*, Amiza, Dr. I. H Khan
Department of Chemistry, School of Science, Minhaj University, Lahore, Pakistan.
*Corresponding Author
Published In:
Volume - 11,
Issue - 2,
Year - 2021
ABSTRACT:
Nanotechnology advancement leads to development of antimicrobial agents like ZnO nanoparticles. These nanoparticle have their main applications in food packaging. when these nanoparticles incorporate into the food surface, it will kill all bacterias residing on the surface and food become free of bacteria. In this way, food can be stored for a long time because its shelf life is improved. Antimicrobial activity of ZnO nanoparticles can be improved by increasing surface area, reducing particle size and large concentration of ZnO –NPS. Antimicrobial activity increases by increasing intensity of UV light. As UV light fall on ZnO nanoparticles, it increases ZnO surface area and hence anrtimicrobial activity will be increased. Exact mechanism of Antimicrobial activity is still unknown but some processes have been presented.
Cite this article:
Saira Sehar, Amiza, I. H Khan. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2):128-1. doi: 10.52711/2231-5691.2021.00024
Cite(Electronic):
Saira Sehar, Amiza, I. H Khan. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2):128-1. doi: 10.52711/2231-5691.2021.00024 Available on: https://asianjpr.com/AbstractView.aspx?PID=2021-11-2-10
REFRENCES:
1. Firouzabadi FB, Noori M, Edalatpanah Y. ZnO Nanoparticle Suspensions containing Citric acid as Antimicrobial to Control Listeria Monocytogenes, Escherichia coli, Staphylococcus Aureus and Bacillus Cereus in Mango juice. Food Control. 2014; 1(42): 310-4.
2. Ahmad M, Zhu J. ZnO Based Advanced Functional Nanostructures, Synthesis, Properties and Applications. Journal of Materials Chemistry. 2011; 21(3): 599-614.
3. Espitia PJ, Soares ND, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EA. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial activity and Food Packaging Applications. Food and Bioprocess Technology. 2012; 5(5): 1447-64.
4. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK, Hasan H, Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-micro letters. 2015;7(3): 219-42.
5. Z. Fan, J.G. Lu, Zinc Oxide Nanostructures: Synthesis and Properties. Journal of Nanoscience Nanotechnology. 2005; 5(10): 1561–1573.
6. Kanmani P, Rhim JW. Properties and Characterization of Bio nano Composite Films Prepared with Various Biopolymers and ZnO Nanoparticles. Carbohydrate Polymers.2014; 5(106): 190-9.
7. Ahvenainen R. Active and Intelligent Packaging, An introduction in Novel food packaging techniques. Wood head Publishing. 2003;1(5): 5-21.
8. Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., Puoci, F., Vinci, G., & Picci, N. New EU Regulation Aspects and Global Market of Active and Intelligent Packaging for Food Industry Applications. Food Control. 2010; 21(11): 1425–1435.
9. Sawai J, Yoshikawa T. Quantative Evalution of Antifungal Activity of Metallic Oxide Powders (MgO, CaO and ZnO) by An Indirect Conductimetric Assay. Journal of Appl Microbiol. 2004; 1(96): 803–809.
10. Yamamoto O, Sawai J, Sasamoto T. Change in Antibacterial Characteristic with Doping of ZnO in MgO-ZnO Solid Solution. Int J Inorg Mater. 2000;1(2): 451–454.
11. Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R. EPR Study of Visible light Induced ROS Generation by Nanoparticles of ZnO. J Phys Chem C. 2009;1(113): 15997–16001.
12. Manna AC. Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles. Springer Press.2012; 1(4): 151–180.
13. Jones N, Ray B, Koodali RT, Manna AC. Antibacterial Activity of ZnO Nanoparticles Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol Lett. 2008; 1(279): 71–76.
14. Applerot G, Perkas N, Amirian G, Girshevitz O, Gedanken A. Coating of Glass with ZnO via Ultrasonic Irradiation and a Study of Its Antibacterial Properties. Appl Surf Sci. 2009; 1(34): 256.
15. Reddy KM, Feris K, Bell J, Hanley C, Punnoose A. Selective Toxicity of Zine Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl Phys Lett. 2007; 1(90): 213902.
16. Padmavathy N, Vijayaraghavan R. Enhanced Bioactivity of ZnO Nanoparticles – An Antibacterial Study. Sci Technol Adv Mater. 2008; 1(9): 035004.
17. M. Nirmala, M.G. Nair, K. Rekha, A. Anukaliani, S. Samdarshi, R.G. Nair, Photocatalytic Activity of ZnO Nanopowders Synthesized by DC Thermal Plasma. Afr. J. Basic Appl. Sci. 2010; 2(5):161–166.
18. M. E, Proceedings of the Photoconductivity Conference, Photoconductivity Conference, Atlantic City, Pennsylvania. John Wiley and Sons, Inc, New York. 1956;1(23):1665
19. I.S.J. Bao, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Photoinduced Oxygen Release and Persistent Photoconductivity in ZnO Nanowires. Nanoscale Res. Lett. 2011; 6(404):1–7.
20. S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced Visible light Photocatalysis Through Fast Crystallization of Zinc Oxide Nanorods. Beilstein J. Nanotechnol. 2010; 1(1):14–20
21. H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A Strategy for ZnO Nanorod Mediated Multi-mode Cancer Treatment. Biomaterials.2011;32(7): 1906–1914
22. J.T. Seil, E.N. Taylor, T.J. Webster, Reduced activity of Staphylococcus Epidermidis in the Presence of Sonicated Piezoelectric Zinc Oxide Nanoparticles in Annual Northeast Bioengineering Conference, Boston, MA, USA.2009; 1(23): 111-2311
23. P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol.2012; 5(5): 1447–1464
24. M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino Acid-Mediated Synthesis of Zinc Oxide Nanostructures and Evaluation of Their Facet-Dependent Antimicrobial Activity. Colloids Surf. B.2014;1(117): 233–239
25. L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007; 9(3): 479–489.
26. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. Effect of Nanocomposite Packaging containing Ag and ZnO on Inactivation of Lactobacillus Plantarum in Orange juice. Food Control.2011;1(22): 408–413.
27. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R. Applications and Implications of Nanotechnologies for the Food Sector. Food Addit Contam A.2008; 1(25): 241–258.
28. Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J. Effects of ZnO Nanoparticles on the Mechanical and Antibacterial Properties of Polyurethane Coatings. Prog Org Coat. 2009; 1(64): 504–509.
29. R. Ahvenainen (ed.). Novel Food Packaging Techniques (CRC Press, Boca Raton, 2003).