ABSTRACT:
Cancer is a leading cause of death in both developed and developing countries, and is an increasing medical burden worldwide, due to population growth and ageing. Chemotherapy, fractionated radiation, and surgical resection are the main cancer treatments. However, the effectiveness of many therapeutic choices is constrained by treatment-related adverse effects, off-target effects, and drug resistance. Additionally, conventional medicines typically are unable to eradicate cancer cells that have spread to other parts of the body, making recurrence. Apart from their use in the immuno-reconstitution, the stem cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. Aim of this review is primarily focus on the recent developments in the use of the stem cells in the cancer treatments, then to discuss the cancer stem cells, now considered as backbone in the development of the cancer; and their role in carcinogenesis and their implications in the development of possible new cancer treatment options in future.
Cite this article:
Anuja A. Masule, Vrushali M. Murari. Utilization of Stem Cells for Cancer Treatment- A Review. Asian Journal of Pharmaceutical Research. 2023; 13(4):269-6. doi: 10.52711/2231-5691.2023.00049
Cite(Electronic):
Anuja A. Masule, Vrushali M. Murari. Utilization of Stem Cells for Cancer Treatment- A Review. Asian Journal of Pharmaceutical Research. 2023; 13(4):269-6. doi: 10.52711/2231-5691.2023.00049 Available on: https://asianjpr.com/AbstractView.aspx?PID=2023-13-4-10
REFERENCES:
1. Siegel RL, Miller KD, Jemal A. Cancer statistics. 2016, CA Cancer Journal for Clinicians. 2016; 66(1): 7–30.
2. Torre LA, Siegel, RL, Ward EM., Jemal A. Global cancer incidence and mortality rates and trends an update, Cancer Epidemiology, Biomarkers and Prevention. 2016; 25(1):16–7.
3. Balaji EV, Selvan AT. Cancer-A Historical Status, Government Regulation and Current Scenario of Socio-Economic Impact – Retrospective Study. Asian J. Pharm. Res. 2018; 8(3): 133-5. doi: 10.5958/2231-5691.2018.00023.0
4. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine 2006; 3(11).
5. Coates AS, Winer EP, Goldhirsch A et al. Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015.Annals of Oncology. 2015; 26(8): 1533–6.
6. Kumbhar S, Salunkhe V, Magdum C. Targeted Drug Delivery: A Backbone for Cancer Therapy. Asian J. Pharm. 2013 3(1): 40-46.
7. Colak, Medem JP. Cancer stem cells—important players in tumor therapyresistance. FEBS Journal.2014; 281(21):4779–1.
8. Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. Journal of Oncology.2011; 2011:11 ID 396076.
9. Lapidot T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).
10. Bonnet D, Dick JE.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).
11. Dange VN, Shid SJ, MagdumCS, Mohite SK. A Review on Breast cancer: An Overview. Asian J. Pharm. 2017; 7(1): 49-1. doi: 10.5958/2231-5691.2017.00008.9
12. Lapidot T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).
13. Saloni S. Chhajed, Mayuri V. Mali, Azam Z. Shaikh, S. P. Pawar, Ritik. S. Jain. Cancer: Immunology and Immunotharapy. Research Journal of Pharmacology and Pharmacodynamics.2022; 14(3):159-4. doi: 10.52711/2321-5836.2022.00027
14. Kunal D. Sutar, Rutika D. Harshad, Omkar S. Sangar, Aishwarya C. Patil, Santosh A. Payghan. An Overview of Stem Cell Therapy. Research Journal of Topical and Cosmetic Sciences. 2022; 13(1):21-6. doi: 10.52711/2321-5844.2022.00004
15. Selvi,S. Stem Cell Therapy. Int. J. Adv. Nur. Management. 2017; 5(4): 361-4. doi: 10.5958/2454-2652.2017.00077.4
16. Ajani JA, Song S, Hochster H S, Steinberg IB. Cancer stem cells: the promise and the potential. Semin. Oncol. 42(Suppl. 1), S3–S17 (2015).
17. Cojoc M, Mabert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms, Semin. 2015; 31: 16–27.
18. Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22, 457–472 (2012).
19. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke M F Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).
20. Ginestier C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007; 1: 555–7.
21. Hirschmann-Jax C. et al. A distinct side populationof cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).
22. Quintana E, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell . 2010; 18:510–523.
23. Singh SK, et al. Identification of human brain tumor initiating cells. Nature 432, 396–401 (2004).
24. Van den Hoogen C. et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 70, 5163–5173 (2010).
25. Zhang WC. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012).
26. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. CellStem Cell. 2013; 13:392–402.
27. Milwid JM, Elman JS, Li M, Shen K, Manrai A, Gabow A, Yarmush J, Jiao Y, Fletcher A, Lee J, Cima MJ, Yarmush ML, Parekkadan B. Enriched protein screening of human bone marrow mesenchymal stromal cell secretions reveals MFAP5 and PENK as novel IL-10 modulators. Mol Ther. 2014; 22: 999–1007.
28. Motaln H, Gruden K, Hren M, Schichor C, Primon M, Rotter A, Lah TT. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant. 2012; 21: 1529–1545.
29. Tiwari RK, Sharma V, Pandey R, Shukla SS. Stem Cells: Basics and its Prospective uses in Medical field. Research J. Pharm. and Tech 2018; 11(4): 1530-1534. doi: 10.5958/0974-360X.2018.00285.
30. Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015;82–83:1–11.
31. Seita J, Rossi DJ, Weissman IL. Differential DNA damage response in stem and progenitor cells. Cell Stem Cell. 2010;7:145–147.
32. Lin HT, Otsu M, Nakauchi H. Stem cell therapy: an exercise in patience and prudence. Philos Trans R SocLond B Biol Sci. 2013;368:20110334.
33. Kumari R. Stem Cell. Int. J. Nur. Edu. and Research. 2018; 6(4):443-446. doi: 10.5958/2454-2660.2018.00107.2
34. Kanojia D, Balyasnikova IV, Morshed RA, Frank RT, Yu D, Zhang L, Spencer DA, Kim JW, Han Y, Yu D, Ahmed AU, Aboody KS, Lesniak MS. Neural stem cells secreting anti-her2 antibody improve survival in a preclinical model of her2 overexpressing breast cancer brain metastases. Stem Cells. 2015;33:2985–2994.
35. HJ, Doo SW, Kim DH, Cha YJ, Kim JH, Song YS, Kim SU. Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice. Cancer Lett. 2013;335:58–65.
36. Weiss L, Or R, Slavin S, Naparstek E, Reich S, Abdul-Hai A. Immunotherapy of murine leukemia following non-myeloablative conditioning with naive or G-CSF mobilized blood or bone marrow stem cells. Cancer Immunother. 2004;53:358–2. doi: 10.1007/s00262-003-0440
37. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. 2006; 126: 663 6.
38. Bago JR, Sheets KT, Hingtgen SD. Neural stem cell therapy for cancer. Methods. 2016; 99: 37–3.
39. Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T, Kassem M. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene. 2004; 23: 5095–5098. doi: 10.1038/sj.onc.1207651.
40. Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Chondrogenic potential of multipotential cells from human adipose tissue. PlastReconstr Surg. 2004; 113:585–594. doi: 10.1097/01.PRS.0000101063.27008.E1.
41. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG, Kassem M. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002; 20:592–596. doi: 10.1038/nbt0602-592.
42. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004; 25:3211–2. doi: 10.1016/j.biomaterials.2003.10.045.
43. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotentmesenchymal stem cells from umbilical cord blood. Blood. 2004; 103:1669–5. doi: 10.1182/blood-2003-05-1670.
44. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. ProcNatlAcadSci U S A. 2003; 100:5807–2. doi: 10.1073/pnas.0937635100.
45. Sottile V, Halleux C, Bassilana F, Keller H, Seuwen K. Stem cell characteristics of human trabecular bone-derived cells. 2002;30:699–704. doi: 10.1016/S8756-3282(02)00674-9.
46. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143.
47. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–109. doi: 10.1159/000071150.
48. Talmadge JE, Reed E, Ino K, Kessinger A, Kuszynski C, Heimann D, Varney M, Jackson J, Vose JM, Bierman PJ. Rapid immunologic reconstitution following transplantation with mobilized peripheral blood stem cells as compared to bone marrow. Bone Marrow Transplant. 1997;19:161–172. doi: 10.1038/sj.bmt.1700626.
49. https://r.search.yahoo.com/_ylt=Awr92Ww2hUNjcKsxrkVXNyoA;_ylu=Y29sbwNncTEEcG9zAzMEdnRpZANMT0NVSTA1NF8xBHNlYwNzcg--/RV=2/RE=1665398198/RO=10/RU=https%3a%2f%2fhsci.harvard.edu%2fstem-cells-and-cancer/RK=2/RS=.l0q6ICD1YxyvMiPKXEEUwH.Z.0-
50. Diksha, Sazal Patyar. Role of Stem Cells in treatment of different Diseases. Research J. Pharm. and Tech 2018; 11(8): 3667-3678. doi: 10.5958/0974-360X.2018.00674.1
51. Storek J, Dawson MA, Storer B, Stevens-Ayers T, Maloney DG, Marr KA, Witherspoon RP, Bensinger W, Flowers ME, Martin P, Storb R, Appelbaum FR, Boeckh M. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood. 2001; 97: 3380–3389. doi: 10.1182/blood.V97.11.3380.
52. Sagar J, Chaib B, Sales K, Winslet M, Seifalian a. Role of stem cells in cancer therapy and cancer stem cells: a review
53. Manjusha P. Yeole, Shailju G. Gurunani, Yogesh N. Gholse. Stem Cell Techniques. Research J. Pharm. and Tech. 2013; 6(3): 304-306.